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ABSTRACT

The System Analysis Module (SAM) is an advanced and modern system analysis tool under
development at Argonne National Laboratory for advanced non-LWR reactor safety analysis. It
aims to provide fast-running, modest-fidelity, whole-plant transient analyses capabilities, which are
essential for fast turnaround design scoping and engineering analyses of advanced reactor concepts.
While SAM is being developed as a system-level modeling and simulation tool, advanced model-
ing techniques being implemented include a reduced-order three-dimensional module, pseudo 3-D
conjugate heat transfer modeling in reactor core, flexible and multi-scale modeling of heat transfer
between fluid and structures, in addition to the advances in software environments and design, and
numerical methods.

SAM aims to be a generic system-level safety analysis tool for advanced non-LWRs, including
Liquid-Metal-cooled fast Reactors (LMR), Molten Salt Reactors (MSR), Fluoride-salt-cooled High-
temperature Reactors (FHR), and High-Temperature Gas-cooled Reactors (HTGR). SAM takes ad-
vantage of advances in physical modeling, numerical methods, and software engineering to enhance
its user experience and usability. It utilizes an object-oriented computational framework (MOOSE),
and its underlying meshing and finite-element library and linear and non-linear solvers, to leverage
the modern advanced software environments and numerical methods.

This document provides the theoretical and technical basis of the code to help users understand
the underlying physical models (such as governing equations, closure models, and component mod-
els), system modeling approaches, numerical discretization and solution methods, and the overall
capabilities in SAM. As new code capabilities and features are added, the SAM Theory Manual will
be updated periodically to keep it consistent with the state of the development.
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1 SAM Overview

The System Analysis Module (SAM) is an advanced system analysis tool being developed at Ar-
gonne National Laboratory under the support of U.S. Department of Energy (DOE) Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program. It aims to be a modern system analysis
code, which takes advantages of the advancements in computing power, software design, numeri-
cal methods, and physical models over the past two decades. SAM focuses on modeling advanced
reactor concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs
(fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors), and HTGRs (high-
temperature gas-cooled reactors). These advanced concepts are distinguished from light-water re-
actors (LWR) in their use of single-phase, low-pressure (except HTGRs), high-temperature, and
non-unity Prandtl number coolants. This simple yet fundamental change has significant impacts on
core and plant design, the types of materials used, component design and operation, fuel behavior,
and the significance of the fundamental physics in play during transient plant simulations.

SAM is aimed to solve the tightly-coupled physical phenomena including fission reaction, heat
transfer, fluid dynamics, and thermal-mechanical response in reactor structures, systems and com-
ponents in a fully-coupled fashion but with reduced-order modeling approaches to facilitate rapid
turn-around for design and safety optimization studies. This document provides the theoretical basis
of the code to help users understand the underlying physical models (such as governing equations,
closure models, and component models), system modeling approaches, numerical discretization and
solution methods, and the overall capabilities in SAM. As new code capabilities and features are
added, the SAM Theory Manual will evolve with periodic updates to keep it consistent with the
state of the development, implementation, and model additions/revisions.

1.1 Software Structure

SAM is being developed as a system-level modeling and simulation tool with higher fidelity
(compared to existing system analysis tools), and with well-defined and validated simulation capa-
bilities for advanced reactor systems. It provides fast-running, modest-fidelity, whole-plant transient
analyses capabilities. To fulfill the code development, SAM utilizes the object-oriented application
framework MOOSE (Gaston et al., 2009) and its underlying meshing and finite-element library,
libMesh (Kirk et al., 2006) and linear and non-linear solvers PETSc (PETSc, 2020), to leverage
the available advanced software environments and numerical methods. The high-order spatial dis-
cretization schemes, fully implicit and high-order time integration schemes, and the advanced so-
lution method (such as the Jacobian-free Newton–Krylov (JFNK) method) are the key aspects in
developing an accurate and computationally efficient model in SAM.

The software structure of SAM is illustrated in Figure 1.1. In addition to the fundamental
physics modeling of the single-phase fluid flow and heat transfer, SAM incorporates advances in
the closure models (such as convective heat transfer correlations) for reactor system analysis devel-
oped over the past several decades. A set of Components, which integrate the associated physics
modeling in the component, have been developed for friendly user interactions. This component-
based modeling strategy is similar to what is implemented in RELAP-7 (Berry et al., 2015), which
is also a MOOSE-based system analysis tool (focused on LWR simulations). A flexible coupling
interface has been developed in SAM so that multi-scale, multi-physics modeling capabilities can
be achieved by integrating with other higher-fidelity or conventional simulation tools.
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Figure 1.1: SAM Code Structure

1.2 Governing Theory

1.2.1 Fluid dynamics

Fluid dynamics is the main physical model of the SAM code. SAM employs a one-dimensional
transient model for single-phase incompressible but thermally expandable flow. The governing
equations consist of the continuity equation, momentum equation, and energy equations. A multi-
dimensional module is also under development to model the multi-dimensional flow and thermal
stratification in the upper plenum or the cold pool of an SFR. The details of the one-D single-phase
flow model for incompressible thermally expandable flow are discussed in Chapter 2. The multi-
dimensional flow model is detailed in Chapter 9.

1.2.2 Heat transfer

Heat structures model heat conduction inside solids and permit the modeling of heat transfer at
interfaces between solid and fluid components. Heat structures are represented by one-dimensional
or two-dimensional heat conduction in Cartesian or cylindrical coordinates. Temperature-dependent
thermal conductivities and volumetric heat capacities can be provided in tabular or functional form.
The modeling capabilities of heat structures can be used to predict the temperature distributions in
solid components such as fuel pins or plates, heat exchanger tubes, and pipe and vessel walls, as well
as to calculate the heat flux conditions for fluid components. Flexible conjugate heat transfer and
thermal radiation modeling capabilities are also implemented in SAM. The details of heat transfer
modeling are discussed in Chapter 3.

1.2.3 Closure Models

The fluid equation of state (EOS) model is required to complete the governing flow equations,
which are based on the primitive variable formulation; therefore, the dependency of fluid properties

2



and their partial derivatives on the state variables (pressure and temperature) are implemented in the
EOS model. Some fluid properties, such as sodium, air, salts like FLiBe and FLiNaK, have been
implemented in SAM. It can also utilize the fluid properties available in the MOOSE Fluid Proper-
ties Module. The details of built-in fluid and solid property models used in SAM are discussed in
Chapter 4.

Empirical correlations for friction factor and convective heat transfer coefficient are also re-
quired in SAM because of its one-dimension approximation of the flow field. The friction and heat
transfer coefficients are dependent on flow geometries as well as operating conditions during the
transient. The details of closure models used in SAM are discussed in Chapter 5.

1.2.4 Mass transport model development

The mass transport modeling capability is needed to model sources and transport of particles
for a number of applications, such as tritium transport, delayed neutron precursor drift, radioactive
isotope transport for molten salt fueled/cooled systems. A general passive scalar transport model
has been implemented in SAM, and it can be used to track any number of species carried by the
fluid flow. The passive scalar transport model is discussed in Chapters 2.

1.2.5 Reactor Kinetics model development

SAM employs a built-in point-kinetics model, including reactivity feedback and decay heat
modeling. Various reactivity feedback models have been developed and integrated with the point-
kinetics module, including fuel axial expansion, core radial expansion, fuel Doppler, and coolant
density reactivity. The details of reactor kinetics and reactivity feedback models are discussed in
Chapter 6.

1.2.6 Numerical Methods

SAM is a finite-element-method based code. The “weak forms” of the governing equations are
implemented in SAM. It uses the Jacobian-Free Newton Krylov (JFNK) solution method to solve
the equation system. The JFNK method uses a multi-level approach, with outer Newton’s iterations
(nonlinear solver) and inner Krylov subspace methods (linear solver), in solving large nonlinear sys-
tems. The concept of ‘Jacobian-free’ is proposed, because deriving and assembling large Jacobian
matrices could be difficult and expensive. The JFNK method has become an increasingly popular
option for solving large nonlinear equation systems and multi-physics problems, as observed in a
number of different disciplines (Knoll and Keyes, 2004). One feature of JFNK is that all the un-
knowns are solved simultaneously in a fully coupled fashion. This solution scheme avoids the errors
from operator splitting and is especially suitable for conjugate heat transfer problems in which heat
conduction in a solid is tightly coupled with fluid flow. The details of the numerical methods used
in SAM are discussed in Chapter 7.

1.3 Overview of Current Capabilities

To develop a system analysis code, numerical methods, mesh management, equations of state,
fluid properties, solid material properties, neutronics properties, pressure loss and heat transfer clo-
sure laws, and good user input/output interfaces are all indispensable. SAM leverages the MOOSE

3



framework and its dependent libraries to provide JFNK solver schemes, mesh management, and I/O
interfaces while focusing on new physics and component model development for advanced reactor
systems. The details of component models in SAM are discussed in Chapter 8. The developed
physics and component models provide several major modeling features:

1. One-D pipe networks represent general fluid systems such as the reactor coolant loops.

2. Flexible integration of fluid and solid components, able to model complex and generic engi-
neering system. A general liquid flow and solid structure interface model was developed for
easier implementation of physics models in the components.

3. A pseudo three-dimensional capability by physically coupling the 1-D or 2-D components
in a 3-D layout. For example, the 3-D full-core heat-transfer in an SFR reactor core can be
modeled. The heat generated in the fuel rod of one fuel assembly can be transferred to the
coolant in the core channel, the duct wall, the inter-assembly gap, and then the adjacent fuel
assemblies.

4. Pool-type reactor specific features such as liquid volume level tracking, cover gas dynamics,
heat transfer between 0-D pools, fluid heat conduction, etc. These are important features for
accurate safety analyses of SFRs or other advanced reactor concepts.

5. A computationally efficient multi-dimensional flow model is under development, mainly for
thermal mixing and stratification phenomena in large enclosures for safety analysis. It was
noted that an advanced and efficient thermal mixing and stratification modeling capability
embedded in a system analysis code is very desirable to improve the accuracy of advanced
reactor safety analyses and to reduce modeling uncertainties.

6. A general mass transport capability has been implemented in SAM based on the passive scalar
transport. The code can track any number of species carried by the fluid flow for various
applications.

7. An infrastructure for coupling with external codes has been developed and demonstrated. The
code coupling with STAR-CCM+ (Hu et al., 2014b), SAS4A/SASSYS-1 (Fanning and Hu,
2016; Brunett et al., 2019), Mammoth/RattleSnake (Hu et al., 2019a), Nek5000, and BISON
(Martineau et al., 2018) have been demonstrated, while the coupling with the PORTEUS code
is undergoing. Details are discussed in Chapter 10.

An example of SAM simulation results of an SFR is shown in Figure 1.2.
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Figure 1.2: SAM simulation results of an SFR.
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2 One-Dimensional Fluid Model

2.1 Governing Equations

The transport equations for one-dimensional, single-phase flow can be described by the follow-
ing set of partial differential equations. The mass, momentum, and energy conservation equations
are closed by the equation of state for the fluid.

∂ρ

∂ t
+

∂ (ρu)
∂ z

= 0

∂ (ρu)
∂ t

+
∂ (ρuu)

∂ z
=−∂ p

∂ z
−ρg−∇ · τ

∂ (ρH)

∂ t
+

∂ (ρuH)

∂ z
= ∇ · (k∇T )−∇q′′r +q′′′+

Dp
Dt

+φ

ρ = ρ (p,T )

(2.1)

where,

t: time;
z: the axial coordinate in flow direction;
ρ: the coolant density;
u: velocity;
g: the acceleration due to gravity;
p: pressure;
τ: shear stress;
T : temperature;
H: enthalpy, and H = E + p/ρ , in which E is internal energy;
k: fluid thermal conductivity;

q′′r : radiation heat flux;
q′′: volumetric internal heat source;
φ : source terms due to external forces, φ =−v ·

(
∇ · τ +ρg

)
, including frictional

dissipation, gravity, etc.

The shear stress in the momentum equation can be simplified using the concept of wall friction
coefficient. The energy equation can be simplified by neglecting the energy variation due to fluid
conduction, radiation heat, thermal expansion, and the source terms due to external forces, as these
terms are negligible compared to surface or internal heating terms. It should be also noted that the
modeling of fluid conduction could be included by a user option if users deem it important for certain
applications. After the simplifications and applying the continuity equation into the momentum and
energy equations, the set of governing equations can be written in the conservative form Eq. (2.2)
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or in the non-conservative form Eq. (2.3).

∂ρ

∂ t
+

∂ (ρu)
∂ z

= 0

∂ (ρu)
∂ t

+
∂ (ρuu+ p)

∂ z
=−ρg− f

De

ρu|u|
2

∂ (ρH)

∂ t
+

∂ (ρuH)

∂ z
= q′′′

p = p(ρ,ρu,ρE) or ρ = ρ (p,T )

(2.2)

In which, f : the friction coefficient; De: equivalent hydraulic diameter. When considering the
convection heat flux from solid surface q′′s , q′′′ = q′′s Ph

Ac
, where Ph and Ac respectively denote heated

perimeter and cross-sectional area of the coolant channel.

∂ρ

∂ t
+

∂ (ρu)
∂ z

= 0

ρ
∂u
∂ t

+ρu
∂u
∂ z

=−∂ p
∂ z
−ρg− f

De

ρu|u|
2

ρCp
∂T
∂ t

+ρCpu
∂T
∂ z

= q′′′

ρ = ρ (p,T )

(2.3)

In which Cp: the specific heat, Cp =
∂H
∂T .

To solve the above set of PDEs, two out of three variables of density, pressure, and temperature
(or total energy) must be selected as the state variables, along with the velocity (or mass flux) to
compose the three state variables for the system of equations. Two common approaches used in the
literature include: (1) primitive variable (or pressure) based formulation, in which the state variables
are pressure (p), velocity (u), and temperature (T ); and (2) conservative variable (or density) based
formulation that uses density (ρ), momentum (ρu), and total energy (ρE) as the state variables.

Historically, the pressure-based approach was developed for low-speed incompressible flows,
while the density-based approach was originally designed for high-speed compressible flows (Moureau
et al., 2005). Both methods have been extended and reformulated to solve and operate for a wide
range of flow conditions beyond their traditional or original intent. The use of conservative variable
(ρ , ρu, ρE) as independent variables would require the pressure to be calculated from the equation
of state (EOS) model. However, this approach may increase the difficulties in code convergence
for applications of incompressible or nearly incompressible liquid flows, since small perturbations
in ρ (density) or ρE (volumetric total energy) would cause significant changes in pressure. To use
Newton-type nonlinear solvers, the ∂ p

∂ρ
, ∂ p

∂ρu , ∂ p
∂ρE , ∂T

∂ρ
, ∂T

∂ρu , ∂T
∂ρE terms are required for constructing

the Jacobian matrix; even if a matrix-free method is used, these derivative terms may still be needed
for the preconditioning matrix. The existence of these terms significantly increases the difficulties in
deriving the Jacobian or preconditioning matrix and may cause convergence problems when using
real fluid EOS.

Although the conservative variable based formulation has the advantages in the applications
of compressible flow such as the capability to capture shock waves, the primitive variable based
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FEM formulation is more suitable for incompressible or nearly incompressible flows, such as the
fluid flow in SFRs, LFRs, or MSRs/FHRs. With the primitive variable approach, using the integral
equations in the conservative form Eq. (2.3) will still ensure the conservation laws of the fluid
equations. Hence, a primitive variable based formulation is used in this work for SFR system
analysis applications. Further details of EOS modeling are discussed in Chapter 4.

2.2 Stabilization Schemes

Finite element analysis of incompressible flows requires stabilization to avoid the potential nu-
merical instabilities. The presence of advection terms (first order terms) in the governing equations
can result in spurious node-to-node oscillations (Hu, 2015). Stabilization methods being success-
fully applied in structure problems, where no convection is present, may totally fail when they are
applied to convection-dominated problems, as they occur frequently in fluid mechanics. This is
particularly the case with Bubnov-Galerkin methods, which are weighted residual methods, where
the test functions are set equal to the shape functions (Moureau et al., 2005). The role of convection
in differential equations can be defined by the Peclet number or Reynolds number. The higher these
numbers are, the more dominant the convection term and the stronger the oscillations.

The same situation can also be found in the finite difference context. There, the same problem
with oscillations occurs when using central differences for the advective operator. In finite dif-
ference methods, it is well known that upwind differencing on the convective term does not show
oscillatory solutions, but introduces over-diffusive results. A simple Taylor series analysis proves
that upwinding is only first order accurate, in contrast to the second order accurate, but oscillatory,
central differences. This analysis also elucidates that upwinding can also be interpreted as central
differences plus artificial diffusion. Thus, the “right” combination of central and upwind differences
may introduce the optimal amount of artificial diffusion, which leads to accurate and oscillation-free
solutions (Moureau et al., 2005).

Starting in the 1970s a large number of FEMs arose with different ideas to include the up-
wind effect in finite element analyses. The Streamline-Upwind/Petrov-Galerkin (SUPG) method,
introduced from Brooks and Hughes (1982) can be considered as the first successful stabilization
technique to prevent oscillations in convection-dominated problems in the FEM. The main concept
is to introduce artificial diffusion in the streamline direction only, interpreted as a modification of the
test function of the advection terms, and to enforce consistency, such that this modified test function
is applied to all terms of the weak form. The term “artificial diffusion” is not fully applicable any
longer, because the stabilized weak form cannot be manipulated such that only a diffusion term is
extracted. The exact solution of the original problem still satisfies the SUPG stabilized weak form.

Considering a PDE of the general form,

Lu = f (2.4)

where L is any differential operator. The SUPG weak form of the problem is:

∫
Ω

w∗ · (Lu− f )dΩ = 0 (2.5)

The standard Bubnov-Galerkin test functions w are modified by a streamline upwind perturbation
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of the kind

w∗ = w+ τLadvw = w+ τ∇w (2.6)

Where Ladv is the advective part of the whole operator L, and τ is the stabilization parameter that
weights the perturbation. Note that the perturbation is multiplied with the residual form of the dif-
ferential equation. Thereby, consistency is fulfilled from the beginning in that the exact solution
also fulfills the stabilized weak form exactly. It is because of this property of the SUPG stabiliza-
tion (and the PSPG stabilization mentioned later) that numerical oscillations are prevented without
introducing excessive numerical diffusion, and therefore without compromising the accuracy of the
solution.

The Pressure-Stabilizing/Petrov-Galerkin (PSPG) method is a common technique used for the
stabilization of the Stokes equations. For Stokes equations:

Continuity equation: ∇ ·u = 0

Momentum equation: ∇ · (ν∇ ·u+ p) = f
(2.7)

The PSPG stabilization term, similar to that of the SUPG, consists of a perturbation τ∇q multi-
plied with the residual of the momentum equation, but it is added to the weak form of the continuity
equation. ∫

Ω

q · (∇ ·u)dΩ+
∫

Ω

τ∇q · [∇ · (ν∇ ·u+ p)− f ]dΩ = 0 (2.8)

In mixed convection-dominant problems, such as the incompressible Navier-Stokes equations
with high Reynolds number, SUPG and PSPG (called herein SUPG/PSPG) stabilization have to be
applied to obtain satisfactory results. It should be mentioned that the PSPG stabilization parameter
does not necessarily have to be identical with the SUPG stabilization parameter. In this work, the
weak forms of the stabilization schemes for incompressible flow are derived as:

(
∂ρ

∂ t
+

∂ (ρu)
∂ z

, ψ

)
+

(
ρ

∂u
∂ t

+ρu
∂u
∂ z

+
∂ p
∂ z

+ρg+
f

De

ρu|u|
2

, τPSPG∇ψ

)
= 0

(
∂ρu
∂ t

+
∂ρuu

∂ z
+

∂ p
∂ z

+ρg+
f

De

ρu|u|
2

, ψ

)
+

(
ρ

∂u
∂ t

+ρu
∂u
∂ z

+
∂ p
∂ z

+ρg+
f

De

ρu|u|
2

, τSUPG∇ψ

)
= 0

(
∂ρH

∂ t
+

∂ρuH
∂ z

−q′′′, ψ

)
+

(
ρCp

∂T
∂ t

+ρCpu
∂T
∂ z
−q′′′, τSUPG∇ψ

)
= 0

(2.9)

in which ψ is the test function; τPSPG and τSUPG are the stabilization parameters that weights the
perturbations; and ( f ,ψ) =

∫
Ω

ψ · f dΩ, is an expression of the volume integral. Note that the
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regular residuals of all conservation equations are calculated based on the conservative form while
the stabilization terms are calculated based on the non-conservative form. This formulation not only
strictly ensures the conservation laws, but also is easy to be implemented. A review of stabilized
finite element formulations for incompressible flow, including the SUPG and PSPG schemes, can
be found in Tezduyar (1992).

In SUPG and PSPG stabilization schemes, additional stabilization terms are added to the stan-
dard Galerkin formulation of the fluid equations. Judicious selection of the stabilization parameters,
τPSPG and τSUPG, plays a key role in determining the stability and accuracy of the formulations.
Various τ formulations were proposed in the literature. The stabilization parameters often involve
a measure of the local length scale and other parameters such as the local Reynolds number and
Courant numbers. For one-dimensional space-time formulation, the formulation of the stabilization
parameters can be defined as:

τ =

[(
2
∆t

)2

+

(
2|u|

h

)2

+

(
4ν

h2

)2
]−1/2

τSUPG = u · τ
τPSPG = τ (U)

(2.10)

Where h is the “element length”, u is local velocity, ∆t is the time step size, ν is the kinematic
viscosity, and U is a global scaling velocity. If U were not defined in the simulation, the local
velocity would be used. This formulation is modified based on the one-dimensional space-time
formulation given in Shakib (2010). For one-dimensional fluid model in reactor safety analysis,
large elements are commonly used, where

(
2|u|

h

)
�
(4ν

h2

)
or |u|h

ν
� 2. Therefore, the stabilization

parameters can be simplified as:

τSUPG = u ·

[(
2
∆t

)2

+

(
2|u|

h

)2
]−1/2

τPSPG =

[(
2
∆t

)2

+

(
2|U |

h

)2
]−1/2

(2.11)

Additionally, an upper bound and lower bound are defined for τPSPG to ensure the robustness of
the stabilization scheme under extreme flow conditions.

2.3 Species Transport

The ability to track various species (e.g. delayed-neutron precursors, decay heat precursors,
tritium, heavy metal particles, and fission products) in the primary cooling system of reactor systems
is key for MSR transient simulation as well as source term evaluation for other advanced reactors.
The mass transport modeling capability has been implemented in SAM based on the general scalar
transport model.

The scalar particle transport model is shown in Equation 2.12: the second and third terms on
the left-hand side represent particle transport and diffusion, respectively; the fourth term represents
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isotope decay, and the source term is defined on the right-hand side of the equation.

∂ρci

∂ t
+∇ · (ρuci)−∇ · (Di∇ci)+λiρci = Si (2.12)

where ρ is the bulk fluid density (kg/m3); ci is the scalar particle (species) mass concentration
(#/kg f luid); u is the fluid velocity (m/s); Di is the diffusion coefficient for scalar particle i (m2/s);
Si is the source term (#/m3); λi is the decay constant for scalar particle i (s−1). The species trans-
port equation is solved together with the fluid conversation equations, using the same stabilization
scheme discussed above.
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3 Heat Transfer Models

3.1 Heat Conduction Modeling

Heat structures model the heat conduction inside the solids and permit the modeling of heat
transfer at the interfaces between solid and fluid components. Heat structures are represented
by one-dimensional or two-dimensional heat conduction in Cartesian or cylindrical coordinates.
Temperature-dependent thermal conductivities and volumetric heat capacities can be provided in
tabular or functional form from user-supplied data. The modeling capabilities of heat structures can
be used to predict the temperature distributions in solid components such as fuel pins or plates, heat
exchanger tubes, and pipe and vessel walls, as well as to calculate the heat flux conditions for fluid
components.

The thermal conduction inside the solid structures is governed by a diffusion equation:

ρCp
∂T
∂ t
−∇ · (k∇T )−Q′′′ = 0 (3.1)

Where k is the solid thermal conductivity, and Q′′′ is the volumetric internal heat source in the
solid. The equation can be discretized in both Cartesian and cylindrical coordinates. The types of
boundary conditions (BC) include: (1) Dirichlet BC, T = T0; (2) Neumann BC, k∇T = q′′0; or (3)
convective BC: −k∇T = h

(
T −Tf luid

)
.

Note that different treatments are needed for the diffusion term ∇ · (k∇T ) in the heat conduction
equation in different geometries.

For 1-D plate type,

∇ · (k∇T ) =
d
dx

(
k

dT
dx

)
(3.2)

For 2-D plate type,

∇ · (k∇T ) =
∂

∂x

(
k

∂T
∂x

)
+

∂

∂ z

(
k

∂T
∂ z

)
(3.3)

For 1-D cylindrical type,

∇ · (k∇T ) =
1
r

d
dr

(
kr

dT
dr

)
(3.4)

For 2-D cylindrical type,

∇ · (k∇T ) =
1
r

∂

∂ r

(
kr

∂T
∂ r

)
+

∂

∂ z

(
k

∂T
∂ z

)
(3.5)

For 1-D spherical type,

∇ · (k∇T ) =
1
r2

d
dr

(
kr2 dT

dr

)
(3.6)
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3.2 Convective Heat Transfer

In many engineering applications, the fluid flow and solid heat conduction is coupled through
convective heat transfer at the solid surfaces. The conjugated heat transfer modeling in SAM at the
fluid-structure interface is shown schematically in Figure. The fluid is modeled as one-dimensional
flow, and the solid structure is modeled as one-D or two-D heat conduction, and they exchange
energy at the fluid-structure interface.

1D	flow

1D	or	2D	structure

x/r

z

q’’’

q”

Figure 3.1: The schematic of conjugate heat transfer modeling in SAM

At the fluid-structure interface, the convective heat flux is:

q′′ =−k∇T = h(Tw−Tf ) . (3.7)

In which h is the heat transfer coefficient, Tw is the wall temperature, and Tf is the fluid temperature.
The weak form of the solid conduction equation (Eq. 3-1) can be written as,(

ρCp
∂T
∂ t

, ψ

)
+(k∇T, ∇ψ)−〈k∇T, ψ〉−

(
Q′′′, ψ

)
= 0 (3.8)

In which ψ is the test function; and ( f , ψ) represents the volume integral, ( f , ψ) =
∫

Ω
ψ · f dΩ; and

〈 f ,ψ〉 represents the surface integral, 〈 f ,ψ〉 =
∫

Γ
ψ · f dΓ. For solid elements at the interface, the

convective heat flux can be directly applied as boundary conditions for the one-D heat conduction
equation, as required by the 〈k∇T,ψ〉 term in Eq. (3.8). However, for fluid elements, it has to be
modeled as an additional heat source term in the energy conservation equation,

q′′′ = h(Tw−Tf )
Pheated

Ac
(3.9)
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This is implemented as an additional term in the residual calculation at each fluid node (quadra-
ture point):

∆renergy =
∫

Ω

q′′′ ·ψdΩ =
∫

Ω

h(Tw−Tf )
Pheated

Ac
·ψdΩ (3.10)

Note the above implementation would introduce another term in the stabilized fluid model formula-
tion. For the SUPG scheme used in SAM,

∆renergy =
∫

Ω

h(Tw−Tf )
Pheated

Ac
· (ψ + τsupg ·∇ψ)dΩ (3.11)

3.3 Thermal Radiation Heat Transfer

The radiation heat transfer in engineering systems (enclosures) normally involves nonblack sur-
faces, which allow multiple reflections to occur. The radiation heat transfer modeling of such en-
closures can become very complicated unless some simplifying assumptions are made. A general
radiation heat transfer enclosure model is not yet implemented in SAM. Instead, simplified models
are implemented to model the radiation heat transfer between two surfaces.

The radiosity, the total radiation energy flux (emitted plus reflected) leaving a surface, can be
defined as the difference between the emitted energy flux and the reflected energy flux. The radiosity
Ri which corresponds to surface i is given by

RiAi = εiσT 4
i Ai +ρi

n

∑
j=1

R jFjiA j (3.12)

in which,
R: radiosity
ε: emissivity
σ : Stefan-Boltzmann constant
T : temperature
ρ : 1− ε , reflectivity
Fji: view factor from surface j to surface i
A j: area of surface j

The radiation enclosure model should also include the reciprocity relation

AiFi j = A jFji (3.13)

and the unity rule which enforces the following constraint

n

∑
j=1

Fi j = 1 (3.14)

The net rate of radiation heat transfer between two surfaces in a general enclosure, from surface
i to surface j, can be given by

Q̇i→ j = AiRiFi j−A jR jFji (3.15)
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So far, only a two-surface enclosure model is implemented in SAM. The net heat transfer rate
between the two surfaces in a two-surface enclosure can be given by

Q̇12 =
σ
(
T 4

1 −T 4
2
)

1−ε1
A1ε1

+ 1
A1F12

+ 1−ε2
A2ε2

=−Q̇21 (3.16)

For infinitely large parallel plates: A1 = A2,F12 = F21 = 1,

q′′1 =
Q̇12

A1
=

σ
(
T 4

1 −T 4
2
)

1
ε1
+ 1

ε2
−1

=−q′′2 (3.17)

For nfinitely long concentric cylinders: A1
A2

= r1
r2
,F12 = 1,F21 =

r1
r2

,

q′′1 =
Q̇12

A1
=

σ
(
T 4

1 −T 4
2
)

1
ε1
+ 1−ε2

ε2

(
r1
r2

) =−q′′2
r2

r1

q′′2 =
−σ

(
T 4

1 −T 4
2
)

1
ε1

r2
r1
+ 1−ε2

ε2

(3.18)

The effects of radiation heat flux on wall surfaces are implemented as an additional term in the
residual calculation at each boundary surface node:

∆r =
∫

Ω

ψ ·q′′dΩ (3.19)
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4 Fluid and Solid Property Model

4.1 Fluid Properties and Equation-of-State

4.1.1 Equation-of-State Modeling in SAM

The fluid equation of state (EOS) model is required to complete the flow governing equations,
which are based on the primitive variable formulation. The dependency of fluid properties and their
partial derivatives on the state variables (pressure and temperature) are implemented in the EOS
model. The following functions/correlations are needed in the SAM EOS model for each fluid.

ρ = ρ (p,T ) ,
∂ρ

∂T
= ξ (p,T ) ,

∂ρ

∂ p
= η (p,T )

β = β (p,T ) =− 1
ρ

∂ρ

∂T
µ = µ (p,T )

k = k (p,T )

Pr =
Cp

µk
H = H (p,T )or H (T ) , T = T (H)

Cp =Cp (p,T ) , Cv =Cv (p,T ) ,
∂Cp

∂T
= f (p,T )

(4.1)

In which:
ρ: density;
β : thermal expansion coefficient;
µ: dynamic viscosity;
Pr: Prandtl number;
H: enthalpy;

Cp: the specific heat at constant pressure;
Cv: the specific heat at constant volume.

Note that the ∂ρ

∂ t and ∂ρ

∂ z terms are needed in the fluid governing equations. They can be obtained
using the chain rule:

∂ρ

∂ t
= ξ

∂T
∂ t

+η
∂ p
∂ t

∂ρ

∂ z
= ξ

∂T
∂ z

+η
∂ p
∂ z

(4.2)

And for incompressible but thermally expandable flow, ∂ρ

∂ p = η (p,T ) = 0. Therefore, we have:

∂ρ

∂ t
= ξ

∂T
∂ t

∂ρ

∂ z
= ξ

∂T
∂ z

(4.3)
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4.1.2 Liquid Sodium Property Modeling

The liquid sodium property model in SAS4A/SASSYS-1 (Fanning, 2012) is applied in SAM, in
which most properties are only dependent on fluid temperature, T in [K].
Liquid Density (ρl in [kg/m3])

ρl = A12 +A13T +A14T 2

∂ρl

∂T
= A13 +2A14T

A12 = 1.00423×103

A13 =−0.21390

A14 =−1.1046×10−5

(4.4)

Liquid Heat Capacity (Cl in [J/(kg·K)])

Cl =
A28

(Tc−T )2 +
A29

Tc−T
+A30 +A31 (Tc−T )+A32 (Tc−T )2

Cp =Cv =Cl

∂Cp

∂T
=

2A28

(Tc−T )3 +
A29

(Tc−T )2 −A31−2A32 (Tc−T )

A28 = 7.3898×105

A29 = 3.154×105

A30 = 1.1340×103

A31 =−2.2153×10−1

A32 = 1.1156×10−4

Tc = 2503.3K, the critical temperature

(4.5)

Liquid Specific Enthalpy (h in [J/kg])
The specific enthalpy of liquid sodium is obtained by integrating the heat capacity over temper-

ature, i.e.,

h = h0 +
∫ T

T0

Cp(T )dT

in which, T0 = 628.15K and h0 is set to be h0 = Cp(T0)× T0. The specific enthalpy can be then
expressed as,

h = h0 +F(T )−F(T0)

with

F(T ) =
A28

Tc−T
−A29ln(Tc−T )−A30(Tc−T )− A31

2
(Tc−T )2− A32

3
(Tc−T )3 .
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Liquid Thermal Expansion Coefficient (βl in [K-1])

βl = A42 +
A43

Tc−T
+

A44

(Tc−T )2 +
A45

(Tc−T )3 +
A46

(Tc−T )4 +
A47

(Tc−T )5

A42 = 2.5156×10−6

A43 = 0.79919

A44 =−6.9716×102

A45 = 3.3140×105

A46 =−7.0502×107

A47 = 5.4920×109

(4.6)

Liquid Thermal Conductivity (kl in [W/(m·K)])

kl = A48 +A49T +A50T 2 +A51T 3

A48 = 1.1045×102

A49 =−6.5112×10−2

A50 = 1.5430×10−5

A51 =−2.46170×10−9

(4.7)

Liquid Viscosity (µl in [Pa·s])

µl = A52 +
A53

T
+

A54

T 2 +
A55

T 3

A52 = 3.6522×10−5

A53 = 0.16626

A54 =−4.56877×101

A55 = 2.87330×104

(4.8)

4.1.3 Salt Property Modeling

Simplified salt property models developed by UC Berkeley (Peterson et al., 2013) are imple-
mented in SAM, in which most properties are only dependent on temperature. Three different types
of salts are implemented, including FLiBe, FLiNaK, and Dowtherm A (a type of simulant oil for
salt).
FLiBe (temperature in [◦C]):

ρ[kg/m3] = 2279.92−0.488T

µ[kg/m · s] = 4.638×105

T 2.79

Cp[J/kg ·K] = 2415.78

h[J/kg] =CpT

k[W/m ·K] = 0.7662+0.0005T

(4.9)
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FLiNaK (temperature in K):

ρ[kg/m3] = 2729.3−0.73T , 940 < T < 1170

µ[kg/m · s] = 2.487×10−4 · e
4478.62

T , 770 < T < 970

Cp[J/kg ·K] = 1905.57

h[J/kg] = CpT

k[W/m ·K] = 0.36+5.6×10−4T , 790 < T < 1080

(4.10)

Dowtherm A (temperature in ◦C):

ρ[kg/m3] = 1078−0.85T

µ[kg/m · s] = 0.130
T 1.072

Cp[J/kg ·K] = 1518+2.82T

h[J/kg] = h0 +1518(T −T0)+1.41(T 2−T 2
0 )

k[W/m ·K] = 0.142−0.00016T

(4.11)

with T0 = 20◦C, and h0 =Cp(T0)× (T0 +273.15).
For the unspecified but needed properties, the following models are used in SAM.

∂ρ

∂T
=

ρ (p,T + ε)−ρ (p,T − ε)

2ε
, ε = 0.5

∂ρ

∂ p
= 0

β =− 1
ρ

∂ρ

∂T
∂Cp

∂T
=

Cp (p,T + ε)−Cp (p,T − ε)

2ε
, ε = 0.5

H = H0 +
∫ T

T0

CpdT

(4.12)

in which T0 is the reference temperature and H0 is the fluid enthalpy at the reference temperature.

4.1.4 Pure Salt Property Modeling

In the Molten Salt Thermophysical Properties Database (Jerden (2019)) under development,
temperature dependent correlations for density, viscosity, thermal conductivity, and heat capacity
are presented. These correlations are proposed for 27 different pure salts. Out of these 27 salts, 10
of these correlations were complete enough to be included in SAM. The 10 salts and their thermo-
physical correlations are shown below:
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LiF (temperature in K):

ρ[kg/m3] = 1000(2.4−0.00049T )

µ[kg/m · s] = 0.001(0.18e
22000

8.3145T )

Cp[J/kg ·K] = 2467.289

k[W/m ·K] = 1.4

(4.13)

NaF (temperature in K):

ρ[kg/m3] = 1000(2.8−0.00064T )

µ[kg/m · s] = 0.001(0.12e
26000

8.3145T )

Cp[J/kg ·K] = 1667.13

k[W/m ·K] = 0.9

(4.14)

KF (temperature in K):

ρ[kg/m3] = 1000(2.6−0.00065T )

µ[kg/m · s] = 0.001(0.11e
24000

8.3145T )

Cp[J/kg ·K] = 1239.313

k[W/m ·K] = 0.57

(4.15)

BeF2 (temperature in K):

ρ[kg/m3] = 1000(2.0−0.000015T )

µ[kg/m · s] = 0.001(3×10−7e
240000
8.3145T )

Cp[J/kg ·K] =
10−0.0015T −1.6×107T−2 +3.0×10−9T 2

0.047
k[W/m ·K] = 0.8

(4.16)

LiCl (temperature in K):

ρ[kg/m3] = 1000(1.9−0.00043T )

µ[kg/m · s] = 0.001(0.11e
19000

8.3145T )

Cp[J/kg ·K] = 1486.059

k[W/m ·K] = 0.73

(4.17)

NaCl (temperature in K):

ρ[kg/m3] = 1000(2.1−0.00054T )

µ[kg/m · s] = 0.001(0.089e
22000

8.3145T )

Cp[J/kg ·K] = 1163.530

k[W/m ·K] = 0.49

(4.18)
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KCl (temperature in K):

ρ[kg/m3] = 1000(2.4−0.00049T )

µ[kg/m · s] = 0.001(0.062e
25000

8.3145T )

Cp[J/kg ·K] = 992.605

k[W/m ·K] = 0.74

(4.19)

MgCl2 (temperature in K):

ρ[kg/m3] = 1000(2.0−0.00027T )

µ[kg/m · s] = 0.001(0.18e
21000

8.3145T )

Cp[J/kg ·K] =
92−2×10−6T +5.9×106T−2

0.095211
k[W/m ·K] = 0.2

(4.20)

CaCl2 (temperature in K):

ρ[kg/m3] = 1000(2.5−0.00042T )

µ[kg/m · s] = 0.001(0.1e
30000

8.3145T )

Cp[J/kg ·K] = 901.031

k[W/m ·K] = 0.45

(4.21)

SrCl2 (temperature in K):

ρ[kg/m3] = 1000(3.4−0.00058T )

µ[kg/m · s] = 0.001(0.096e
35000

8.3145T )

Cp[J/kg ·K] = 630.811

k[W/m ·K] = 0.38

(4.22)

4.1.5 Mixed Salt Property Modeling

In the Molten Salt Thermophysical Properties Database, there are temperature dependent cor-
relations for density, viscosity, thermal conductivity, and heat capacity for different salt mixtures.
Correlations are set up for 36 different mixed salts, although almost all of them are incomplete. Fu-
ture work will be needed to have more complete correlations. Of the mixed salts, it was determined
that one (LiF-NaF-KF) was complete enough to be included in SAM. For this mixed salt, the density
correlation has an uncertainty of 2%, the viscosity correlation has an uncertainty of 2%, the heat
capacity correlation has an uncertainty of 10%, and the thermal conductivity correlation has an un-
certainty of 5%. Note the LiF-NaF-KF correlations in the database are slightly different from those
of FLiNaK that was previously implemented in SAM. Both set of models are available in SAM now.
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LiF−NaF−KF (temperature in K):
Composition (Mole %): 0.465-0.115-0.42

ρ[kg/m3] = 1000(2.6−0.00062T ) , 940 < T < 1170

µ[kg/m · s] = 0.001(0.025e
4500

8.3145T ) , 770 < T < 970

Cp[J/kg ·K] =
980+1.1T

0.126
k[W/m ·K] = 0.36−0.00056T , 790 < T < 1080

(4.23)

4.1.6 MSRE Fuel Property Modeling

Fission product data for numerous and varied samples taken during the Molten Salt Reactor
Experiment (MSRE) was compiled and reported in an MSRE report (Compere et al. (1975)). This
includes physical properties of the MSRE fuel salt used in the experiment. The temperature depen-
dent models of the MSRE fuel salt that were reported are implemented into SAM. The MSRE fuel
salt contains LiF, BeF2, ZrF4, UF4, Cr, Fe, Ni. For this MSRE fuel, the temperature correlations
that are currently implemented in SAM are shown below:

ρ[kg/m3] = 1000(2.575−0.000513(T −273.15)) , ±1% Precision

µ[kg/m · s] = 0.001(0.116e
3755

T ) , ±7% Precision

Cp[J/kg ·K] = 2386.47 , ±3% Precision

k[W/m ·K] = 0.01 , ±10% Precision

(4.24)

4.2 Liquid Metal Property Modeling

The Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility,
Thermal-hydraulics and Technologies (OECD/NEA (2015)) contains comprehensive temperature
dependent property models on density, viscosity, heat capacity, thermal conductivity, and enthalpy.
The recommended temperature dependent correlations of lead, bismuth, and LBE are implemented
in SAM. The relative precision and uncertainty vary depending on which other available models
these correlations are compared to. For density, the deviation of the lead model does not exceed
2%, the deviation of the bismuth model does not exceed 1.3%, and the deviation of lead-bismuth
eutectic does not exceed 0.8%. For viscosity, the estimated uncertainty of the lead model is 5%,
the deviation of the bismuth model does not exceed 5%, and the deviation of lead-bismuth eutectic
does not exceed 8%. For heat capacity, the maximum deviation from accepted models is 10%, the
deviation of the bismuth model does not exceed 2%, and the deviation of lead-bismuth eutectic
does not exceed 5%. For thermal conductivity, the estimated uncertainty is 15% for lead, 15%, for
bismuth, and the deviation of lead-bismuth eutectic from accepted models does not exceed 15%.
The correlations implemented in SAM are shown below:
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Lead (temperature in K):

ρ[kg/m3] = 11441−1.2795T

µ[kg/m · s] = 4.55×10−4e
1069

T , 600.6 < T < 1473

Cp[J/kg ·K] = 176.2−4.923×10−2T +1.544×10−5T 2−1.524×106T−2 , 600.6 < T < 2021

k[W/m ·K] = 9.2+0.011T , 600.6 < T < 1300

∆h[J/kg] =

176.2(T −Tm)−2.4616×10−2(T 2−T 2
m)+

5.147×10−6(T 3−T 3
m)+

1.524×106(T−1−T−1
m )

(4.25)

Bismuth (temperature in K):

ρ[kg/m3] = 10725−1.22T

µ[kg/m · s] = 4.456×10−4e
780
T , 544.6 < T < 1300

Cp[J/kg ·K] = 118.2+5.934×10−3T +7.183×106T−2 , 544.6 < T < 1831

k[W/m ·K] = 7.34+9.5×10−3T , 544.6 < T < 1000

∆h[J/kg] =
118.2(T −Tm)−2.967×10−3(T 2−T 2

m)−
7.183×106(T−1−T−1

m )

(4.26)

Lead−Bismuth Eutectic (temperature in K):

ρ[kg/m3] = 11065−1.293T

µ[kg/m · s] = 4.94×10−4e
754.1

T , 400 < T < 1173

Cp[J/kg ·K] = 164.8−3.94×10−2T +1.25×10−5T 2−4.56×105T−2 , 400 < T < 1100

k[W/m ·K] = 3.284+1.617×10−2T −2.305×10−6T 2

∆h[J/kg] =
164.8(T −Tm)−1.97×10−2(T 2−T 2

m)+

4.167×10−6(T 3−T 3
m)+4.56×105(T−1−T−1

m )
(4.27)

4.2.1 Other Built-in EOS Models

Other built-in EOS models in SAM include:

1. Simple air EOS model AirEquationOfState, in which tabulate air properties (The Engineering
Toolbox, 2017) including density, specific heat, thermal conductivity, expansion coefficient,
kinematic viscosity with temperature ranging from -150 oC to 400 oC are implemented.

2. Constant EOS model, PTConstantEOS, in which all properties except density are constant
user-specified input values. Density is then a linear function of temperature using the provided
thermal expansion coefficient.
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3. FluidPropertiesEOS, in which the fluid properties are directly from FluidProperties classes.
It can use all the fluid property models (such as ideal gas, water, methane, etc.) implemented
in the MOOSE Fluid Properties Module. FunctionFluidProperties is also implemented in
SAM, in which all fluid properties can be provided in function or table formats in the input
file. This gives users the flexibilities to use additional property models without modifying
the SAM source codes. This is particular useful for potential MSR/FHR or other reactor
developers, as the salt fluid properties may not be widely known and the reactor developer
can supply their proprietary properties in the input model.

4.3 Solid Properties

SAM provides users with the option to manually input temperature-dependent solid property
models that can be used in simulation. This user option is maintained, but a material library con-
taining correlations for solid properties was implemented. This library will be expanded in the
future to provide improved user experience.

4.3.1 Clad Property Modeling

Currently, two different types of stainless steels, HT9 and D9, are implemented in SAM. Cor-
relations for specific heat, thermal expansion, density and thermal conductivity were taken from
references Banerjee et al. (2007), Leibowitz and Blomquist (1988), and Yamanouchi et al. (1992).
These correlations are shown below.

HT9 (temperature in K):

Cp[J/kg ·K] =
1
6
(T −227)+500 , T < 527oC

=
3
5
(T −527)+550 , T > 527oC

α[1/K] =
1

100

(
−0.2191+5.678×10−4T+

8.111×10−7T 2−2.576×10−10T 3

)

ρ[kg/m3] =
7800

1+3α

k[W/m ·K] = 17.622+2.428×10−2T −1.696×10−5T 2 , 500K < T < 1030K

= 12.027+1.218×10−2T , 1030K < T < 1200K

(4.28)

D9 (temperature in K):

Cp[J/kg ·K] = 431+17.7×10−2T +8.72×10−5/T 2

α[1/K] =
1

100

(
−0.4247+1.282×10−3T+

7.362×10−7T 2−2.069×10−10T 3

)

ρ[kg/m3] =
7800

1+3α

k[W/m ·K] = 7.598+2.391×10−2T −8.899×10−6T 2 , 500K < T < 1030K

= 7.260+1.509×10−2T , 1030K < T < 1200K

(4.29)
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4.3.2 Fuel Property Modeling

Thermal physical properties of a few fuel types, i.e. UO2, MOX, U-Pu-Zr, are also implemented
in SAM for user friendliness. The irradiated thermal conductivity for UO2 and MOX are also
provided. The correlations taken from references (Karahan (2017, 2009); Savage (1968); Maeda
and Asaga (2004); Billone (1986); Popov et al. (2000); Fanning (2017)) were combined to allow
for complete density, thermal conductivity, and heat capacity correlations. In the table below, the
coefficients used for the heat capacity calculations of UO2 and MOX are provided.

Table 4.1: Constants used in heat capacity correlations for UO2 and MOX.

Constant UO2 MOX Units
C1 302.27 322.49 J/kg/K
C2 8.463×10−3 1.4679×10−2 J/kg/K2

C3 8.741×107 0 J/kg
θ 548.68 587.41 K
Ea 18531.7 0 K

UO2 (temperature in K):

ρ f [kg/m3] =
10970

1+2.04×10−5(T −273)+8.79×10−2(T −273)2 , T < Tsolidus

=
ρ f−solidus

1+0.07338
T −Tsol

Tliq−Tsol

, Tliquidus < T < Tsolidus

=
ρ f−liquidus

1+
0.9285(T −Tliq)

8860−0.9285(T −Tliq)

, T > Tliquidus

Cp[J/kg ·K] =
C1(θ/T )2eθ/T

(eθ/T −1)2 +2C2T +C3Eae−Ea/T T 2

k0[W/m ·K] =
(0.06059+0.2754

√
2− O

M
+2.011×10−4T )−1+

4.715×109

T 2 e
−16361

T +0.2
(4.30)
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MOX (temperature in K):

ρ f [kg/m3] =
11460

1+2.04×10−5(T −273)+8.79×10−2(T −273)2 , T < Tsolidus

=
ρ f−solidus

1+0.07338
T −Tsol

Tliq−Tsol

, Tliquidus < T < Tsolidus

=
ρ f−liquidus

1+
0.9285(T −Tliq)

8860−0.9285(T −Tliq)

, T > Tliquidus

Cp[J/kg ·K] =
C1(θ/T )2eθ/T

(eθ/T −1)2 +2C2T +C3Eae−Ea/T T 2

k0[W/m ·K] =
(0.06059+0.2754

√
2− O

M
+2.011×10−4T )−1+

4.715×109

T 2 e
−16361

T

(4.31)
U−Pu−Zr (temperature in K):

ρ[kg/m3] =

(
WZr

6500
+

WUPu
19000

)−1 1−P−0.015Bu
1+6×10−5(T −293.15)

Cp1[J/kg ·K] = 26.58+
0.027

Molar Mass
T , T < 868.15K = T1

Cp2[J/kg ·K] = 15.84+
0.026

Molar Mass
T , 868.15K < T < 923.15K = T2

Cp3[J/kg ·K] = cp1 +
cp2− cp1

T2−T1
(T −T1) , T > 923.15K

k[W/m ·K] = a+bT + cT 2

a = 17.5
(

1−2.23WZr

1+1.61WZr
−2.62WPu

)

b = 1.54×10−2
(

1+0.061WZr

1+1.61WZr
+0.9WPu

)

c = 9.38×10−6(1−2.7WPu)
(4.32)
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Irradiated UO2 (temperature in K):

k[W/m ·K] = k0F1F2F3F4

F1 =

(
1.09

Bu3.265 +
0.0643
Bu0.5 T 0.5

)
arctan

((
1.09

Bu3.265 +
0.0643

Bu0.5T 0.5

)−1
)

F2 = 1+
0.019Bu

(3−0.019Bu)(1+ e
T−1200
−100 )

F3 = 1− 0.2

1+ e
T−900

80

F4 = 1−2.5P , P < 0.1

=
1−P
1+2P

, P≥ 0.1

(4.33)

Irradiated MOX (temperature in K):

k[W/m ·K] = k0F1F2F3F4

F1 =

(
1.09

Bu3.265 +
0.0643
Bu0.5 T 0.5

)
arctan

((
1.09

Bu3.265 +
0.0643

Bu0.5T 0.5

)−1
)

F2 = 1+
0.019Bu

(3−0.019Bu)(1+ e
T−1200
−100 )

F3 = 1− 0.2

1+ e
T−900

80

F4 = 1−2.5P , P < 0.1

=
1−P
1+2P

, P≥ 0.1

(4.34)
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5 Closure Models

5.1 Convective Heat Transfer Correlations

5.1.1 Convective heat transfer modeling options in SAM

The closure models selected in SAM have been largely based on the practices of existing nuclear
reactor system codes with an emphasis on considering the effects of low-Prandtl number fluids used
in liquid-metal cooled fast reactor concepts. From extensive review of closure models used in other
system codes and from more recently developed correlations in the literature, a subset of the con-
vective heat transfer correlations have been implemented in SAM as available user options, as well
as the default correlation selected based on the geometry and flow conditions. The considerations
behind the selections include:

• Fluid type (focused on liquid-metal) and flow geometry,

• Applicable flow regime and geometric ranges,

• Uncertainty of correlations,

• Model complexity / user-accessibility,

• Popularity amongst system code users,

• State-of-the-art investigations/reviews.

The overall structure of the heat transfer model selection in SAM is shown in Figure 5.1. The
user is able to select correlations for an individual component by specifying it within the component
input block. The default options are listed in Figure 5.1 in bold color font. If the user does not
specify a correlation, SAM will determine which correlation to use based on the fluid type (Prandtl
number) and the specified flow geometry (pipe or rod bundle). A summary of the implemented heat
transfer correlations is listed in Table 4-1. Many of these correlations are also implemented in one
or more existing system codes including SAS4A/SASSYS-1 (Fanning, 2012), RELAP5-3D (INL,
2012), TRACE (NRC, 2010), ATHENA (Davis and Shieh, 2000), MARS-LMR (Ha et al., 2010),
ANTEO+ (Lodi et al., 2016), ATHLET (Chen and Cheng, 2005), CATHARE (Polidori, 2010), etc.

5.1.2 Low-Prandtl Fluids

The heat transfer characteristics of fluids are highly dependent on the Prandtl number, for which
low-Prandtl fluids (Pr < 0.1) require a separate set of correlations. The following sub-sections out-
line the recommended heat transfer correlations for several flow geometries, determined by survey
of use in existing system thermal hydraulic codes.

5.1.2.1 Pipe flow-circular tube forced convection

The default model for pipe flow is the Seban-Shimazaki correlation (Seban and Shimazaki,
1951). This correlation is based on work done by Lyon (1949), but developed for liquid flow inside a
tube with a constant wall temperature boundary condition. It is widely implemented for liquid metal
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PIPE FLOW GEOMETRY

ROD BUNDLE FLOW GEOMETRY

Liquid Metal (Pr < 0.1)

Seban-Shimazaki (1951)
Cheng-Tak (2004)

Notter-Sleicher (1972)
Aoki (1973)

Other Fluids (Pr > 0.1)

Dittus-Boelter (1930)
Sellars (1956)
Churchill-Chu (1975)

max {

Liquid Metal (Pr < 0.1)
Kazimi-Carelli (1974) + Ushakov (1977) 

+ Modified Schad (1976)
Mikityuk (2009)

Modified Schad (1976)
Graber-Rieger (1973)

Other Fluids (Pr > 0.1)

Inayatov (1975)
Sellars (1956)
Churchill-Chu (1975)

max {

USER-DEFINED MODEL

Figure 5.1: SAM modeling options for convective heat transfer

flows across a majority of system thermal hydraulic codes. The correlation is often recommended
based on its simple form and universal applicability, and is commonly used amongst system codes.
However, it must be noted that this existing Seban-Shimizaki correlation was based on a highly
idealized case, with a relatively large range of uncertainty to the original data.

Nu = 5.0+0.025Pe0.8, if Pe > 100

Valid:102 ≤ Pe≤ 2×104

Uncertainty: N.R. (No Reference)

(5.1)

The Notter-Sleicher correlation (Notter and Sleicher, 1972) is a recommended option for pipe
flow. The work of Notter-Sleicher proposed a more rigorous set of equations that encapsulate the
full range of Prandtl fluids (with different correlations for liquid metals and non liquid metals),with
a well-defined uncertainty. The numerical results of the original study (Notter and Sleicher, 1972)
were shown to be in good agreement with experimental data on fully developed heat transfer rates
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for Prandtl numbers between 0.01 and 104.

Nu = 4.8+0.0156Pe0.85Pr0.08

Valid:104 ≤ Re≤ 106, 0.004≤ Pr≤ 0.1

Uncertainty:±5%
(5.2a)

Nu = 5+0.016ReaPrb

a = 0.88− 0.24
(4+Pr)

, b = 0.33+0.5e−0.6Pr

Valid:104 ≤ Re≤ 106, 0.1≤ Pr≤ 104

Uncertainty:±10%

(5.2b)

The Aoki correlation (Aoki, 1973) is suggested as another option for pipe flow. This correlation
has been implemented by KAERI in their fast reactor thermal-hydraulics module MARS-LMR (Ha
et al., 2010) specifically for pipe flow geometries, and has shown good results in their work on
EBR-II modeling.

Nu = 6.0+0.025
[

0.014Re1.45Pr1.2
(

1− e−71.8

Re0.45Pr0.2

)]0.8

Valid: N.R. (No Reference)

Uncertainty: N.R. (No Reference)

(5.3)

The Cheng-Tak correlation (Cheng and Tak, 2006) is another option for pipe flow. Although
it was originally developed for lead-bismuth eutectic (LBE) flows, it is applicable to other liquid
metal flow conditions as well.

Nu = A+0.018Pe0.80

A =


4.5, Pe≤ 1000

5.4−0.0009Pe, 1000 < Pe < 2000

3.6, Pe≥ 2000

Valid: Pe≤ 6×104

Uncertainty: N.R. (No Reference)

(5.4)

If the single-phase liquid flow is characterized as fully developed laminar flow (Pe < 10), then
the assumption from Sellars correlation (Sellars et al., 1956; Incropera et al., 2007) for convection
with uniform surface heat flux boundary in circular tube flow is selected as the default model.

Nu =
48
11
≈ 4.36

Implemented if Pe < 10

Uncertainty: N.R. (No Reference)

(5.5)
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5.1.2.2 Rod bundle flow-core channel forced convection

All rod bundle heat transfer correlations have additional dependencies on the bundle geometry,
characterized by the pitch-to-diameter-ratio P/D. The suggested default model for bundle flow is
the updated Calamai/Kazimi-Carelli correlation (Calamai et al., 1974). This correlation is widely
implemented for liquid metal bundle flows across a majority of system thermal hydraulic codes.
This correlation is simple in nature and covers a significant range, thus presenting a relatively robust
option.

Nu = 4+0.16
(

P
D

)5

+0.33
(

P
D

)3.8( Pe
100

)0.86

Valid: 1.1≤ P
D
≤ 1.4, 10≤ Pe≤ 5×103

Uncertainty: N.R. (No Reference)

(5.6)

Todreas and Kazimi (2012) showed that the Kazimi-Carelli correlation agreed well with exper-
imental data at P/D = 1.15, but underestimated the Nusselt number at P/D = 1.30. This correlation
has been predominantly implemented in most existing system codes for fast reactors.

The following correlations are implemented in the default model to account for geometries
that lie outside the applicable range of this correlation. The Ushakov correlation (Ushakov et al.,
1977; Pfrang and Struwe, 2007) extends the existing correlation given by Calamai et al. (1974).
Although popularized by Westinghouse for system codes, reviews of the correlation’s performance
have shown to typically under-predict heat transfer for larger pitch-diameter ratios (above 1.3), and
in the case of modeling EBR-II, under-predicting the Nusselt number by as much as 30%. The
Ushakov correlation provides a more accurate modeling of larger pitch/diameter ratio rod bundle
flows (implemented for P/D > 1.4).

Nu = 7.55
(

P
D

)
−20

(
P
D

)−13

+
0.041( P

D

)2 Pe(0.56+0.19 P
D)

Valid: 1.3≤ P
D
≤ 2.0, 0≤ Pe≤ 4×103

Uncertainty: ±5%

(5.7)

The Modified Schad correlation, also by Kazimi and Carelli (1976), extends existing correla-
tion given by Calamai et al. (1974). This correlation is implemented to cover cases with very tight
lattice geometries (P/D < 1.1). Furthermore, since the origins of this correlation come from mod-
eling the core flows of an actual reactor design, the correlation is also presented as a user option to
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be used in place of the default Calamai correlation:

For 150≤ Pe≤ 103 :

Nu =

[
−16.15+24.96

(
P
D

)
−8.55

(
P
D

)2
]

Pe0.3

For Pe≤ 150 :

Nu = 4.496

[
−16.15+24.96

(
P
D

)
−8.55

(
P
D

)2
]

Valid: 1.05≤ P
D
≤ 1.5, Pe≤ 103

Uncertainty: N.R. (No Reference)

(5.8)

The Mikityuk correlation developed in recent work Mikityuk (2009) has provided a more gener-
alized correlation for rod bundle convective heat transfer over the complete range of pitch/diameter
ratios. Although it is robust and derived with experimental data from both triangular and square rod-
bundle geometries, there has not been a large body of literature to reference its usage. Nonetheless,
it is suggested that this correlation be implemented as an available user option that would replace
the usage of the Calamai and Ushakov correlations if desired.

Nu = 0.047
(

1− e−3.8( P
D−1)

)(
Pe0.77 +250

)
Valid: 1.1≤ P

D
≤ 1.95, 30≤ Pe≤ 5×103

Uncertainty: ±5%(possibly less)

(5.9)

The Gräber-Rieger correlation (Gräber and Rieger, 1972) is provided as a user option for bun-
dle flows. This correlation has been implemented and recommended in some work by KAERI (Choi
and Kim, 2008) for use in describing the shell-side heat transfer in heat exchangers with rod bun-
dles. It is anticipated that this correlation can be used in a similar manner when modeling heat
exchangers.

Nu = 0.25+6.2
P
D
+

[
0.032

(
P
D

)
−0.007

]
Pe(0.8−0.024 P

D)

Valid: 1.25≤ P
D
≤ 1.95, 150≤ Pe≤ 3×103

Uncertainty: N.R. (No Reference)

(5.10)

5.1.3 Non-Liquid Metal Fluids

For single-phase non-liquid-metal flow, the Dittus-Boelter (1930) correlation (Todreas and
Kazimi, 2012) is a classic and standard analytical correlation for single-phase heat transfer. It is
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sufficient to determine the convective heat transfer properties for internal pipe flow. The uncertainty
of this correlation is more well defined than other existing correlations.

Nu = 0.023Re0.8Prn; n =

{
0.4, heating

0.33, cooling

Valid:
L
D
≥ 10, Re≥ 105( turbulent), 0.6≤ Pr≤ 160

Uncertainty: ±15%

(5.11)

The adjustment to the classic Dittus-Boelter as proposed by (Inayatov, 1975) to consider the
rod-bundle geometric properties is also implemented in SAM. Further literature review should be
performed to assess an appropriate justification of the correlation uncertainty.

Nu = 0.023
(

P
D

)
Re0.8Prn; n =

{
0.4, heating

0.33, cooling

Valid: 1.1≤ P
D
≤ 1.6, 6×103 ≤ Re≤ 106, 0.6≤ Pr≤ 18

Uncertainty: N.R. (No Reference)

(5.12)

In the case of low flow conditions, fully developed laminar flow correlation Sellars et al. (1956),
as described in Eq. (5.4) is used again for non-liquid metal fluids.

For single-phase natural convection adjacent to a vertical plane, the Churchill-Chu correlation
(Churchill and Chu, 1975) is implemented, which is consistent with the implementation in RELAP5-
3D (INL, 2012).

Nu =

0.825+
0.387Ra

1
6(

1+(0.492/Pr)
9

16

) 8
27


2

Valid: Ra < 1012

Uncertainty: N.R. (No Reference)

(5.13)

For single-phase natural convection adjacent to a horizontal plane (laminar flow), the McAdams
correlation (McAdams, 1954) was chosen, in line with the implementation in RELAP5. This par-
ticular correlation is valid for the lower surface of a heated plane or the upper surface of a cooled
plane.

Nu = 0.27Ra0.25

Valid: 105 < Ra < 1010

Uncertainty: N.R. (No Reference)

(5.14)

For non-liquid-metal fluid flow, the maximum value of the calculated heat transfer coefficient
from the Dittus-Boelter (or Inayatov), Sellars, and Churchill-Chu correlations are used, consistent
with the implementation in RELAP5-3D (INL, 2012).
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5.1.4 User-specified heat transfer correlation option

User-specified models are also included as an option that allows for greater customization and
flexibility to address any shortcomings or necessary modifications to the included models. The
provided correlation below is adopted from the implementation in CATHARE (Polidori, 2010) for
forced convections.

Nu = Nu0 +a
(

Reb + c
)

Prd (1+ eRe f )0.1
(5.15)

For natural convection, a different correlation is used because of the dependence on Rayleigh
number.

Nu = Nu0 +aRab (5.16)

The above heat transfer correlations implemented in SAM are summarized in Table 5.1, in which
the default correlations for different geometry and flow conditions are shaded.
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Table 5.1: SAM convective heat transfer models

Name Correlation Re Pr Pe P/D Uncert. Notes

Circular Pipe Geometry
Dittus-Boelter 

(1930) Nu = 0.023	Re!.#Pr !.$ [1e5, inf) [0.6, 160] - ± 15% *Default, for 
Pr > 0.1

Seban-
Shimazaki 

(1951)
Nu = 5.0 + 0.025Pe!.# [1e2, 

2e4] - N. R.
*Default, 
Forced, 

Turbulent

Sellars et al. 
(1956) Nu =

48
11 ≈ 4.36 [0, 10) - ± 10% 

(for He)

*Default,
Forced, 
Laminar

Aoki (1973)
Nu = 6.0 + 0.025

×	 0 .014	Re!.#$Pr!.%× 1 −
𝑒&'!.(

Re).#$Pr).%
).( - - Forced, 

Turbulent

Cheng-Tak
(2004)

Nu = 𝐴 + 0.018	Pe).(

𝐴 = 6
4.5, Pe≤ 1000

	5.4 − 0.0009Pe, 	1000 < Pe ≤ 2000
3.6, Pe≥ 2000

[0, 6e4] - - Forced, 
Turbulent

Notter-Sleicher
(1972)

𝑁𝑢 = 4.8+ 0.0156	Pe).($Pr).)(
[1e4, 
1e6]

[0.004, 
0.1] - ± 5%

Forced, 
Turbulent𝑁𝑢= 5 +0.016	𝑅𝑒*𝑃𝑟+

𝑎 = 0.88 − ).%#
#,-.

, 𝑏 = 0.33 + 0.5𝑒&)./-.
[0.1, 1e4] - ± 10%

Churchill-Chu 
(1975)

𝑁𝑢= 0.825+ ).0('	2*	
!

"

!, ).#3% -.⁄ 	
#
!"

	
$

%&

%
Ra: 

[0, 1e12] - N. R.

*Default for 
Pr > 0.1,
Vertical 

Nat. Conv.
USER 

(Forced)
Nu = Nu!+ 𝑎	 Re% +𝑐 	Pr&	 1 + 𝑒	Re'

!.(
- - - - -

USER 
(Nat. Circ.)

Nu = Nu!+𝑎Ra% - - - - -

Rod Bundle Geometry
Inayatov
(1975) Nu =0.023

𝑃
𝐷 Re!.#Pr!.$ [6e3, 

1e6] [0.6, 18] [1.1, 
1.6] N. R. *Default, for 

Pr > 0.1

Kazimi-Carelli
(1976) Nu = 4+0.16

𝑃
𝐷

)
+0.33

𝑃
𝐷

*.# Pe
100

!.#+
[10, 
5e3]

[1.1, 
1.4] N. R. 

*Default within 
P/D range,

Forced, 
Turbulent

Modified Schad
(1976) Nu =

4.496 −16.15 + 24.96 !
" − 8.55 !

"

#
, Pe ≤ 150

−16.15 + 24.96 !
" − 8.55 !

"

#
Pe$.&, 150 ≤ Pe ≤ 1000

[0, 
1e3]

[1.05, 
1.5] -

*Default for 
P/D range outside 

Kazimi-Carelli,
Forced, Turbulent

Ushakov et al. 
(1977)

Nu = 7.55	
𝑃
𝐷
− 20	

𝑃
𝐷

&!0

+	
0.041
𝑃/𝐷 % Pe

() .$/,).!3	
-
6
) [0, 

4e3]
[1.3, 
2.0] ± 5%

*Default for 
P/D range outside 

Kazimi-Carelli,
Forced, Turbulent

Mikityuk
(2009) Nu = 0.047 1− 𝑒=*.#

>
?=( Pe!.@@+250 [30, 

5e3]
[1.1, 
1.95] ± 5% Forced, 

Turbulent

Graber-Rieger 
(1973)

Nu = 0.25 + 6.2	
𝑃
𝐷 +	 0 .032

𝑃
𝐷 −0.007 Pe().(&).)%#	

-
6) [150, 

3000]
[1.25, 
1.95] - Forced, 

Turbulent
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5.2 Wall Friction Correlations

The wall friction (drag) correlations models in SAM have been largely based on practices of ex-
isting nuclear reactor system codes such as RELAP5 (INL, 2012) and TRACE (NRC, 2010). After
reviewing the closure models used in many existing system codes and the available correlations in
the literature, a subset of the wall friction correlations have been implemented in SAM as available
user options, as well as the default correlation based on the geometry and flow conditions.

The overall structure of wall friction model selection in SAM is shown in Figure 5.2. he user
is able to select correlations for an individual component by specifying it within the component
input block. If the user does not specify a correlation, SAM will determine which correlation to
use based on the flow conditions (Reynolds number), specified flow geometry (pipe or rod bundle)
and pitch-to-diameter (P/D) ratio if applicable. Additionally, SAM has the capability to allow the
user to specify multiplier factors in the input model to the calculated laminar and turbulent friction
factors (with the transition interpolation adjusted accordingly). These allow the user to ‘simulate’
the effects of complex geometry using existing correlations.

PIPE FLOW GEOMETRY

Laminar (Re < 2200)

Darcy friction (1951)
Churchill (1977)

Transition

Reciprocal Interpolation
Churchill (1977)

Turbulent (Re > 3000)

Blasius – McAdams
Churchill (1977)

Zigrang-Sylvester (1985)

Laminar Factor Turbulent Factor

USER-DEFINED MODEL

ROD BUNDLE FLOW GEOMETRY

Laminar (Re < ReL)

Cheng-Todreas (1986)*

Transition

Cheng-Todreas (1986)*
Rehme (1973)

Turbulent (Re > ReT)

Cheng-Todreas (1986)*
Rehme (1973)

*Simplified version of correlation

Figure 5.2: SAM modeling options for wall friction coefficient

While thermal properties are very different among different fluids (liquid-metal, salt, air, and
water), hydraulic characteristics are quite similar. Therefore, most correlations that have been de-
veloped for water as the working fluid can also be used to characterize the pressure drop in advanced
reactor systems. Although the effect of material consideration is not as significant, geometric fea-
tures in advanced reactor designs are markedly different than those found in a typical LWR.
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5.2.1 Pipe flow geometry

The Darcy friction factor is a dimensionless quantity used in the Darcy–Weisbach equation for
the description of friction losses in pipe flow, as well as in open channel flow. It is also known as
the Darcy–Weisbach friction facto or resistance coefficient and is four times larger than the Fanning
friction factor. For laminar flows, it is considered valid and an exact solution to the Colebrook
equation.

f =
64
Re

, for Re < 2200 (5.17)

For turbulent flow, the Blasius (1913) correlation (Todreas and Kazimi, 2012) provides a semi-
nal correlation for the friction factor within a circular pipe. The Blasius correlation is the simplest
model for liquid wall friction. It gives reasonable results when applied to turbulent flow in smooth
circular tubes. Since it is only a function of Reynolds number, it serves as a generic correlation that
works for every fluid. It is often used in system codes:

f =
0.316
Re0.25 , for 3×103 ≤ Re≤ 3×104 (5.18)

Another simple yet common approximation for turbulent friction is the McAdams (1942) cor-
relation (Todreas and Kazimi, 2012), which is valid for a specific range of the turbulent region:

f = 0.184Re−0.2, for 3×104 ≤ Re≤ 106 (5.19)

For the transition region between the laminar and turbulent regimes, an interpolation scheme can
be used for a continuous change of wall friction coefficients. The approach taken is a “reciprocal
interpolation” that was also implemented in RELAP5 (INL, 2012). Weighting factors are applied
in a way that smoothly averages the friction factors at the endpoints of the transition regime and
interpolates depending on the Reynolds number of the flow:

f = (1−w) flam,Remin +w fturb,Remax

w =
N

Remin
− N

Re

N =
ReminRemax

Remax−Remin

(5.20)

In which Remin and Remax are the lower and upper bounds of the transition region.
The default wall friction model in pipe flow depends on the flow regimes: laminar flow, turbu-

lent flow, and a transition region between the two. Corresponding to most popular definitions, the
transition region lies in the range of Re: 2200-3000, where laminar flow is expected for Re < 2200
and turbulent flow is expected for Re > 3000. The entire flow regime and the wall friction model is
organized as follows:
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Table 5.2: Default SAM wall friction models for internal pipe flow

Regime Correlation Re (min) Re (max)
Minimum f =1 0 64
Laminar Darcy 64 2200
Transition Recip. Interpolation 2200 3000
Turbulent Blasius; McAdams 3000 3×104

The standard definition of wall drag in a smooth circular tube is described by the Colebrook-
White equation, which is transcendental in form and not directly solvable. Therefore, two popular
correlations that approximate the Colebrook-White friction factor equation have also been imple-
mented in SAM accordingly as user options.

Churchill (1977): This correlation covers the entire flow regime range without need for inter-
polation, providing a more robust capability. The Churchill correlation gives satisfactory accuracy
to approximating the Colebrook-White equation.

f = 8

[(
8

Re

)12

+
1

(A+B)
3
2

] 1
12

A =

[
2.457ln

1( 7
Re

)0.9
+ 0.27ε

D

]16

, B =

(
37530

Re

)16

Valid: Re≥ 50

Uncertainty: ±3.2%

(5.21)

In which ε is the pipe roughness.
Zigrang-Sylvester (1985) (INL, 2012) is a user option for wall friction modeling in the turbu-

lent flow regime. It is only applicable to turbulent flow, thus requires interpolation for the transition
regime.

1√
f
=−2log10

{
ε

3.7D
+

2.51
Re

[
1.14−2log10

(
ε

D
+

21.25
Re0.9

)]}
Valid: Re≥ 3×103

Uncertainty: ±5.5%

(5.22)

5.2.2 Wire-wrapped rod bundle geometry

Cheng-Todreas correlation (Cheng and Todreas, 1986): This is the default model incorporated
in SAM for wire-wrapped rod bundle geometries. The correlation is widely accepted and consid-
ered as an accurate representation of wire-wrap friction pressure drop. In the fast reactor design
community, this correlation has been shown to have reasonably good accuracy among the available
options, and is a widely adopted model. The simplified model is currently implemented in SAM as
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the detailed Cheng-Todreas model is only applicable in modeling the effects in a single sub-channel
region.

f =


C f L/Re, Re≤ ReL

C f L

Re
(1−ψ)1/3 +

C f T

Re0.18 ψ
1/3, ReL < Re < ReT

C f T/Re0.18, Re≥ ReT

(5.23)

with ReL = 300×101.7( P
D−1) the laminar-transition Reynolds number, ReT = 104×100.7( P

D−1) the
transition-turbulent Reynolds number, and ψ = log

(
Re
ReL

)
/ log

(
ReT
ReL

)
the intermittency factor.

For the simplified correlation,

C f L =

[
−974.6+1612.0

(
P
D

)
−598.5

(
P
D

)2
](

H
D

)0.06−0.085 P
D

;

C f T =

[
0.8063−0.9022log

(
H
D

)
+0.3526

(
log
(

H
D

))2
](

P
D

)9.7(H
D

)1.78−2.0 P
D

In which P/D is the pitch-to-diameter ratio, and H/D is the wire-pitch-to-diameter ratio.
For the detailed correlation, C f L and C f T take different values according to the geometric type

of the liquid subchannel under consideration: triangular (between three pins), edge (between two
pins and a wall), or corner (between one pin and two walls). Its complete expression is detailed in
Cheng and Todreas (1986). The RMS error of these correlations on a database of 79 bundles is 7 %
(detailed) / 7.6 % (simplified) for turbulent flows and 12.2 % (detailed) / 13.6 % (simplified) for
laminar flows.

Rehme (1973): This correlation was established on a set of experiments by Rehme (most of
which were conducted before 1967) and considered 75 different geometries.

f =

[
64

Re
√

F
+

0.0816(
Re
√

F
)0.133

]
F

Pb

Passembly

F =

(
P
D

)0.5

+

[
7.6

Dm

H

(
P
D

)2
]2.16 (5.24)

The Rehme correlation takes into account the influence of the hexagonal duct. This correlation is
valid for the following conditions:

103 < Re < 3×105 (transitory or turbulent flow regime)

8 <
H

Dm
< 50

1.1 <
P
D

< 1.42

7 < Nrod < 217
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Where Dm: rod diameter + wire diameter, P: rod pitch, D: rod diameter, Re: Reynolds number,
using means bundle average value, H: wire pitch, Nrod : number of rods, Pb: rod bundle and wire
friction perimeter, Passembly: total (with hexagonal duct) friction perimeter.

The Rehme correlation is another widely used correlation based on an effective velocity to take
into account the swirl flow velocity around the rod. It considers the effects of P/D and H/D and
the influence of the duct and the number of pins. The accuracy of Rehme’s correlation to his own
experimental data is ±8% for turbulent flows.

5.2.3 User-specified wall friction correlation option

A simple friction-factor correlation for an exponential function of the Reynolds number has
been provided for the user to supply their own friction correlation. The current form is a simple
implementation, and can be amended as additional dependencies are found to be significant. At the
current stage, the form of this correlation is implemented across the entire flow regime, and will be
augmented in a way that a user may specify correlations for the laminar, transition and turbulent
flow regimes individually.

f = A+B×ReC (5.25)

The above wall friction correlations are implemented in SAM and summarized in Table 5.3, in
which the default correlations for different geometry and flow conditions are shaded.
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Table 5.3: List of SAM wall friction models

Name Correlation Re P/D H/D Nrod Uncert. Notes

Circular Pipe Geometry
Darcy 
friction 𝑓	 = 	

64
𝑅𝑒

[64, 
2200) Exact *Default, 

Laminar
Blasius 
(1913) 𝑓 = 0.316/𝑅𝑒!.#$ [3e3, 

inf)
*Default, 
Turbulent

McAdams 
(1942) 𝑓 = 0.184 - Re%!.#	 [3e4, 

1e6]
*Default, 
Turbulent

Zigrang-
Sylvester 

(1985)

1
𝑓
= −2log!"

𝜖
3.7𝐷+

2.51
𝑅𝑒 1 .14 −2log!"

𝜖
𝐷 +

21.25
𝑅𝑒" .$

[3e3, 
inf) ± 5.5% Turbulent

Churchill 
(1977)

𝑓 = 8	
8
𝑅𝑒

!%
+	

1

𝐴 +𝐵
&
%

!
!%

𝐴 = 2.457	𝑙𝑛 !
!

"#

$.&
'	

$.'!	∈

*

!)
, 𝐵 = &*+&"

,-

!)

[50, 
inf) ± 3.2 All regimes

RELAP 
Interpolation

𝑓 = 1− 𝑤 𝑓!"# ,%&+,-+ 𝑤𝑓'()*,%&+./, 𝑤 =
𝑁

𝑅𝑒#+,
−
𝑁
𝑅𝑒

[2200, 
3000)

*Default,
Transition

Wire-Wrapped Bundle Geometry

Cheng-
Todreas
(1986)

𝑓 = 𝐶./ /𝑅𝑒, for Re < ReL;

𝑓 =
0-.
,-
(1− ψ)!/&+

0-/
,-0 .23

ψ!/& for ReL < Re < ReT;

𝑓 = 𝐶.2 /𝑅𝑒" .!3 for Re > ReT,

𝑅𝑒/ = 300∗ 10!.*
4
5	4! 			 	𝑅𝑒2 = 105 1 10!.*(

4
5	4!)

ψ = log
Re
𝑅𝑒/

/log
𝑅𝑒2
𝑅𝑒/

[50, 
1e6]

[1.025, 
1.42] [8, 50] [19, 

217] ± 14%

*Default,
All regimes,
Simplified 

model

Rehme
(1973)

f = )5
89 :

+ 	 "."3!)

89 :
0.266 F

;7
;899:;7<=

	F =
p
d

".+
+ 7.6

d<
H

p
d

% %.!)
[1e3, 
3e5]

[1.1, 
1.42] [8, 50] [7, 

217] ± 8% All regimes
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6 Reactor Power Models

6.1 Point Kinetics Model

6.1.1 Point kinetics equations

The analysis of the transient behavior of a nuclear reactor requires the coupled simulation reactor
kinetics and thermal-hydraulics of the reactor core. The point kinetics model is widely used for the
coupled simulation due to its simplicity to capture the transient behavior of the reactor. In the point
kinetics model, it is assumed that the reactor power can be separated into space and time function.
The assumption is adequate when the space distribution remains nearly constant during the transient.
For stationary fuel reactors, the widely used Point Kinetics Equations (PKE) (Fanning et al., 2017)
for m-groups of delayed neutron precursor are

dn
dt

=
ρext −βe f f

Λ
n+

m

∑
i=1

λiCi (6.1)

dCi

dt
=

βi

Λ
n−λiCi (6.2)

where n(t) is the time-dependent total neutron density, normalized by the neutron population at full
fission power; Ci(t) is the i-th delayed neutron precursor density, ρext(t) is the time-dependent net
reactivity function, βi is the i-th delayed neutron fraction, βe f f = ∑βi is the total delayed neutron
fraction, Λ is the neutron generation time, and λi is the i-th group decay constant. In practice, 6
delayed neutron precursor groups are used.

Eq. (6.1) is an initial value problem (IVP) with a set of coupled linear ODEs. At first we convert
it to a vector form as,

du
dt

= F(u, t) (6.3)

where

u =



n
C1
C2
C3
C4
C5
C6


,F(u, t) =



ρext−βe f f
Λ

n+
6
∑

i=1
λiCi

β1
Λ

n−λ1C1
β2
Λ

n−λ2C2
β3
Λ

n−λ3C3
β4
Λ

n−λ4C4
β5
Λ

n−λ5C5
β6
Λ

n−λ6C6


(6.4)

For the case of constant reactivity function ρext(t) = ρ0, an analytical solution of the PKE can
be obtained rather easily. At first, Eq. (6.3) is converted to a matrix form as

du
dt

= A ·u (6.5)
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where

A=



ρ0−βe f f
Λ

λ1 λ2 λ3 λ4 λ5 λ6
β1
Λ

−λ1 0 0 0 0 0
β2
Λ

0 −λ2 0 0 0 0
β3
Λ

0 0 −λ3 0 0 0
β4
Λ

0 0 0 −λ4 0 0
β5
Λ

0 0 0 0 −λ5 0
β6
Λ

0 0 0 0 0 −λ6


(6.6)

For given delayed neutron parameters and a constant reactivity ρ0, matrix A is constant (does
not depend on time) and linear (does not depend on u). The matrix A has real eigenvalues and can
be diagonalized as

A=K ·D ·K−1 (6.7)

where matrix D is diagonal with eigenvalues and K is the right eigenvector matrix whose columns
are right eigenvectors,

D= Diag
(
ω1, · · · ,ω7

)
(6.8a)

K=
(
K1 . . . K7

)
(6.8b)

The eigenvalues and eigenvector matrix (and its inverse) can be found numerically with little com-
putational burden.

Substituting the diagonalized matrix A into Eq. (6.5) and making some arrangements, we obtain

du
dt

=K ·D · (K−1 ·u) (6.9)

Multiplying both sides by K−1, we obtain

K−1 du
dt

= D · (K−1 ·u) (6.10)

Let v =K−1 ·u, we obtain
dv
dt

= D ·v (6.11)

which is a set of uncoupled ODEs,

dvi

dt
= ωivi, for i = 1, · · · ,7 (6.12)

The solution of vi is trivial,

vi(t) = vi,0 exp(ωit), for i = 1, · · · ,7 (6.13)

Here vi,0 = vi(t0) is the initial values. Eventually, the analytical solution is obtained with

u =K ·v (6.14)

43



6.1.2 Fully implicit BDF scheme

The current default solution scheme for PKE is the implicit Euler (BDF1) or second-order back-
ward differentiation formula (BDF2). Both of these two schemes solves PKE and the nonlinear
equations (e.g. fluid equations) simultaneously. The discretization of PKE’s temporal terms is
straightforward,

un+1−un

∆t
= F(un+1, tn+1), BDF1 (6.15)

3
2 un+1−2un + 1

2 un−1

∆t
= F(un+1, tn+1), BDF2 (6.16)

where vector u and vector F are defined Eq. (6.4). Note that the size of vector u and vector F will
depend on the group of delayed neutron precursor in the PKE equation.

6.1.3 High-order implicit Runge-Kutta scheme

In order to improve the accuracy for solving the PKE and separate the solution of PKE from the
other parts of the system, an auxiliary multi-stage Implicit Runge-Kutta (IRK) (Süli and Mayers,
2003) scheme is developed. For convenience, the PKE is re-written as,

du
dt

= (A1 +A2) ·u (6.17)

where

A1 =



−βe f f
Λ

λ1 λ2 λ3 λ4 λ5 λ6
β1
Λ

−λ1 0 0 0 0 0
β2
Λ

0 −λ2 0 0 0 0
β3
Λ

0 0 −λ3 0 0 0
β4
Λ

0 0 0 −λ4 0 0
β5
Λ

0 0 0 0 −λ5 0
β6
Λ

0 0 0 0 0 −λ6


,A2 =



ρext(t)
Λ

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(6.18)

Notice that A1 is constant over time while A2 is in general time-dependent. For explanation pur-
poses, 6 groups of delayed neutron precursor are used, but the scheme is general for a different
number of groups.

Let h=∆t be the time step size. The general one step s-stage IRK scheme with given coefficients
ci and ai j is formulated as

un+1 = un +h
s

∑
i=1

biki (6.19)

where the intermediate solution ki is solved by

ki = F(tn + cih,un +h
s

∑
j=1

ai jk j), for i = 1, · · · ,s (6.20)

Because the PKE is a set of linear OKEs, the vector F depends linearly on the intermediate solution
vector ki’s, Eq. (6.20) forms a set of linear equations with respect to unknown vector ki.
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The coefficients ci, ai j, and bi can be organized compactly in a Butcher tableau (Süli and Mayers,
2003)

c1 a11 · · · · · · a1s

c2 a21 · · · · · · a2s
...

...
...

cs as1 · · · · · · ass

b1 · · · · · · bs

(6.21)

Here we will focus on the 1-stage backward Euler formula (IRK1), 2-stage Radau quadrature for-
mula (IRK2), and 3-stage Radau quadrature (IRK3) formula. The Butcher tableau for IRK1, IRK2,
and IRK3 are (Süli and Mayers, 2003)

1 1
1
,

0 1
4 −1

4
2
3

1
4

5
12

1
4

3
4

,

0 1
9

−1−
√

6
18

−1+
√

6
18

6−
√

6
10

1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−
√

6
36

(6.22)

IRK1 is expected to be first-order accurate and is equivalent to BDF1 scheme, IRK2 is expected to
be third-order accurate, and IRK3 is expected to be fifth-order accurate.

For a s-stage IRK formulation, the formula for solving the intermediate solution k1, · · · ,ks is

(Ms
1 +Ms

2) ·

k1
...

ks

=

r1
...

rs

 (6.23)

where Ms
1 and Ms

2 are coefficient matrices, r1 to rs are right hand side source vectors. They are
defined as

Ms
1 =

I−ha11A1 · · · −ha1sA1
... · · ·

...
−has1A1 · · · I−hassA1

 ,Ms
2 =

−ha11A2(τ1) · · · −ha1sA2(τ1)
... · · ·

...
−has1A2(τs) · · · −hassA2(τs)

 (6.24)

ri = [A1 +A2(τi)] ·un, for i = 1, · · · ,s (6.25)

where τi = tn + cih. The unknown intermediate solution vectors ki can be solved efficiently with a
direct linear equation solver, e.g. LU decomposition.

An example which models a step-reactivity insertion, ρext(t) = 0.003, is designed to verify the
order of accuracy of different schemes. The delayed neutron parameters are:

Λ = 0.00002,βe f f = 0.007

βi = (0.000266,0.001491,0.001316,0.002849,0.000896,0.000182)

λi = (0.0127,0.0317,0.155,0.311,1.4,3.87)

(6.26)

The initial condition assumes an equilibrium state with

u0 =
(

1,
β1

λ1Λ
,

β2

λ2Λ
,

β3

λ3Λ
,

β4

λ4Λ
,

β5

λ5Λ
,

β6

λ6Λ

)T
(6.27)
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The neutron density at time t = 1 s with different time step is used to obtain the observed order of
accuracy. The exact solution is ne = 2.2248007490664827. The study results are shown in Table
6.1 and Figure 6.1. As expected, the current BDF1 and BDF2 schemes are observed to be first and
second order accurate; and the IRK1, IRK2, and IRK3 schemes are observed to be first, third, and
fifth order accurate. Notice that since the IRK3 is very accurate, the truncation error becomes to
play when the time step is too small. The BDF1 and IRK1 schemes are inherently identical, which
is demonstrated in the results as well.

Table 6.1: Observed order of accuracy in PKE solution of step-reactivity insertion with different
schemes.

10 2 10 1

Time step: s

10 13

10 11

10 9

10 7

10 5

10 3

Er
ro

r

BDF1
BDF2
IRK1
IRK2
IRK3

Figure 6.1: Numerical error in PKE solution of step-reactivity insertion with different schemes.
Notice that BDF1 and IRK1 are identical.

6.2 Reactivity Feedback Models

The reactivity function ρext(t) in Eq. (6.1) represents the net reactivity of the external reactivity
(e.g. reactivity due to control rod movement) and various reactivity feedbacks of from the system.
Four types of reactivity feedback have been developed for working with the PKE model, including
fuel axial expansion, core radial expansion, fuel Doppler, and coolant density reactivity feedback.
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6.2.1 Fuel axial expansion reactivity feedback

In advanced nuclear reactors (e.g. Sodium-cooled Fast Reactor), the fuel, especially metallic
fuel, expands or shrinks within the cladding in response to the fuel temperature changes during the
transient, which imposes a positive or negative reactivity feedback. The fuel axial expansion model
was developed to consider the reactivity feedback in response to the fuel temperature changes during
the transient. In SAM, the fuel axial expansion reactivity (Fanning et al., 2017; Hu et al., 2019b) is
calculated by the difference between the transient and initial values of total reactivity worth in the
fuel pins,

RA(t) =
∫ z=L

′

z=0
ρ f (ξ , t) f (ξ )Adξ (6.28)

∆RA(t) = RA(t)−Rss
A (6.29)

where ∆RA is the fuel axial expansion reactivity feedback in the unit of ∆ k/k; ρ f (ξ , t) is the fuel
density at transient time t in the unit of kg/m 3; f (ξ ) is the fuel reactivity coefficient in unit of ∆ k/k
/ kg; L

′
and A are the expanded fuel length during the transient and cross-section area, respectively.

The integration will consider the axial thermal expansion of the fuel pin.
The fuel axial expansion reactivity model was implemented in SAM using the linear thermal

expansion coefficient of fuel and cladding material, which are used in estimating the fuel pin axial
displacement due to the temperature change. The axial displacement of fuel pin was calculated by

ui(z) =
∫ z

0
αi(T̄i− T̄i,0)dz, i = 1,2 (6.30)

where ui, αi, T̄i, and T̄0,i are the axial displacement (in free expansion), linear thermal expansion
coefficient, area-averaged temperature, and stress-free temperature of fuel (i= 1) or cladding (i= 2),
respectively. The current model also considers the condition when the fuel rod and the cladding
are in eutectic formation. In eutectic formation, the fuel rod and cladding are assumed to expand
together due to the strong shear stress in the rod-cladding boundary. The effective axial displacement
(Hetnarski et al., 2009) for eutectic fuel pin is

ue = u1
A1E1

A1E1 +A2E2
+u2

A2E2

A1E1 +A2E2
(6.31)

where ue is the effective axial displacement in the fuel pin, Ai and Ei are the area and Young’s
modulus of fuel (i = 1) and cladding (i = 2), respectively.

Considering dividing the fuel into N number of layers in axial direction, when the axial dis-
placement is available, the integral reactivity worth is calculated by,

RA(t) =
N

∑
i=1

mi f (ξi) (6.32)

where mi is the mass of the i-th axial layer which is held constant during the transient calculation
due to mass conservation, ξi is the axial center location of i-th layer with the axial displacement in
consideration, i.e. ξi is determined by the axial displacement.

The previous model works well for the solid fuel where the axial expansion is small. However,
it faces some issues in case of liquid fuel: the assumption of linear thermal expansion becomes
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problematic for liquid fuel, such as used in molten-salt reactor, where the axial thermal expansion
(and fuel density change) could be significant. Due to thermal expansion, there could be a portion
of fuel outside the nominal fuel length. The exact reactivity worth of this portion of fuel needs being
provided by the reactor physics calculation. This is understood as an input that should be provided
by the SAM users. For liquid fuel, the reactivity worth of this portion of fuel could be important.

An additional fuel axial expansion reactivity feedback model is added into SAM for better
treatment of liquid fuel. In this model, the density change of the fuel during the transient is directly
used in estimating the reactivity. Let the mesh size be ∆z; A be the fuel area; fi and ρi be the
reactivity worth and fuel density at the i-th layer. The fuel axial expansion reactivity inside the fixed
mesh (i.e. the nominal fuel length region) is evaluated with

∆R
′
=

N

∑
i=1

[ρi(t)−ρ
ss
i ] fiA∆z (6.33)

where ρi(t) is the temperature dependent fuel density of i-th layer. The reactivity contribution of
the fuel beyond the fixed mesh is considered by

∆R∗ = f ∗ρN(t)A[L
′−L] (6.34)

where f ∗ is the value of fuel reactivity function beyond the fixed mesh, ρN(t) is the density of the
last layer of fuel, and L

′
is the expanded fuel length during the transient. L

′
is calculated from the

fuel density change using mass conservation. The total fuel axial expansion reactivity is thus

∆RA(t) = ∆R∗+∆R
′
= f ∗ρN(t)A[L

′−L]+
N

∑
i=1

[ρi(t)−ρ
ss
i ] fiA∆z (6.35)

This model avoids the assumption of linear thermal expansion by using directly the relation between
fuel density and fuel temperature, and is thus valid for liquid fuel.

6.2.2 Core radial expansion reactivity feedback

Due to temperature changes in the cooling system, the reactor core experiences radial thermal
expansion, which impose a positive or negative reactivity feedback. For most advanced nuclear re-
actor design, there are also some constraint systems (e.g. Grid plate, Above core load pad, Top load
pad), and the geometry of the reactor core during the transient is also affected by those constraint
system (Figure 6.2).

The core radial expansion model is developed to consider the reactivity feedbacks in response
to the thermal expansions of reactor cores during the transient. The current model implemented in
SAM is able to consider the expansion effects based on multiple constraint systems (Figure 6.2).
The reactivity feedbacks due to the expansion effects at different elevations are weighted by user-
defined factors (Fanning et al., 2017; Hu et al., 2019b)

∆RRC(t) =
N

∑
n

(
∆R
R

)
n
wnρRC,n (6.36)

where ∆RRC is the core radial expansion feedback in the unit of ∆k/k; ∆R/R is the relative change in
the radius of reactor core; ρRC,n is core radial expansion coefficient at position n in the unit of ∆k/k
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Figure 6.2: Restraint systems in typical SFR and core radial expansion

per ∆R/R; wn is the user-defined weighting factor; N is the total number of the constraint systems.
The relative change in radius of reactor core at different position n is provided by either an external
thermal-mechanical calculation or SAM standalone calculation. When SAM standalone calculation
is enabled, a linear thermal expansion model will be initialized to calculate the displacement of
individual constraint system and thus the relative change in core radius, i.e.(

∆R
R

)
n
= αn[T̄n(t)− T̄ ss

n ] (6.37)

where αn and T̄n are the thermal expansion coefficient and average temperature of the n-th radial
constraint system, specified by the user.

6.2.3 Fuel Doppler reactivity feedback

The fuel Doppler reactivity model is implemented in SAM to consider the reactivity feedbacks
in response to the fuel temperature changes during the transient. The Doppler reactivity feedback
is integrated over the core channels and provided to the Point Kinetics model for the calculation of
fission power. Considering the fuel is split into N axial layers, the Doppler reactivity is calculated
by (Fanning et al., 2017; Hu et al., 2019b)

RD(t) =
N

∑
n

αD,n ln
Tf ,n

T ss
f ,n

(6.38)

where RD is the fuel Doppler reactivity feedback in the unit of ∆k/k; αD,n is the fuel Doppler
reactivity coefficient of n-th layer in unit of ∆k/k per ln((T + ∆T )/T ); Tf ,n(t) and T ss

f ,n are the
average fuel temperature of n-th layer at the time t and at the beginning (usually a steady-state),
respectively. The Doppler reactivity coefficients need being generated from external neutronics
calculations. The Doppler reactivity coefficients are provided as user inputs in SAM input model.
With user-provided fuel Doppler reactivity coefficients, the fuel temperature changes during the
transient impose a positive or negative reactivity feedback on the fission power.
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6.2.4 Coolant density reactivity feedback

The coolant density reactivity model is developed to consider the reactivity feedbacks in re-
sponse to the coolant temperature changes during the transient. The coolant density reactivity feed-
back is integrated over the flow channels and the difference between the initial and transient values
is provided to the Point Kinetics model for the calculation of fission power. Considering the flow
channel is split into N volumes, (Fanning et al., 2017; Hu et al., 2019b)

RCD(t) =
N

∑
n

αnρn(t)Vn (6.39)

∆RCD(t) = Rss
CD−RCD(t) (6.40)

where ∆RCD(t) is the coolant density reactivity at time t in the unit of ∆k/k; αn is the coolant den-
sity reactivity coefficient of n-th volume in unit of ∆k/k per kg; ρn(t) is the coolant density of n-th
volume at the time of t; Vn is the volume of n-th volume. Together with user-provided coolant den-
sity reactivity coefficients, the reactivity feedbacks in response to the coolant temperature changes
during the transient impose a positive or negative impact on the fission power.

6.3 Decay Heat Model

The decay heat model based on the ANS standard ANSI/ANS-5.1-2005 was implemented in
SAM for stationary fuel. All labels used in equations of this subsection are listed in Table 6-2.

Table 6.2: Description of notations used in decay heat equations

Term Unit Meaning
f j(t) MeV/fission-s Decay power t seconds after a fission event from isotope j.
αi, j MeV/fission-s Tabulated data from ANS standard.
λi, j s-1 Tabulated data from ANS standard.
Pd(t) W Decay heat power
Q f MeV/fission Prompt recoverable energy per fission
C1 J/MeV C1 = 1.602×10−13

F(t) Fission/s Total fission rate F(t) = Pf (t)
Q f C1

Hi, j(t) J Amount of fictitious decay heat precursor
βi, j βi, j =

αi, j
λi, jQ f

j Index j refers to the four isotopes (U-235, U-238, Pu-239, Pu-241).

In ANS standard, the decay heat power at time t for a fission event from isotope j occurring at
time 0 is express as

f j(t) = ∑
i

αi, je−λi, jt (6.41)

Then, the decay power

Pd(t) = ∑
j

∫ t

−∞

Pf (t ′)
Q fC1

C1 f j(t− t ′)dt ′ (6.42)

50



Figure 6.3: Decay heat model time

with t and t’ defined in Figure 6-2
Hi, j(t) is defined as

Hi, j(t) =
∫ t

−∞

F(t ′)
αi, j

λi, j
e−λi, j(t−t ′)dt ′ (6.43)

So that

Pd(t) = ∑
j
∑

i
λi, jHi, j(t) (6.44)

The initial condiction is

Hi, j(0) =
∫ 0

−∞

Pf (t ′)βi, jeλi, jt ′dt ′ (6.45)

In the current implementation, Pf (t ′) is assumed to be constant before t = 0, so

Hi, j(0) =
Pf (−∞)βi, j

λi, j
(6.46)
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and

Pd(0) = ∑
j
∑

i
Pf (−∞)βi, j (6.47)

At a certain time step tk,

Hi, j(tk +∆t) =
∫ tk+∆t

−∞

Pf (t ′)βi, je−λi, j(tk+∆t−t ′)dt ′

=
∫ tk

−∞

Pf (t ′)βi, je−λi, j(tk+∆t−t ′)dt ′+
∫ tk+∆t

tk
Pf (t ′)βi, je−λi, j(t−t ′)dt ′

= Hi, j(tk)e−λi, j∆t +
∫ tk+∆t

tk
Pf (t ′)βi, je−λi, j(t−t ′)dt ′

(6.48)

It is further assumed that Pf (t ′) is a 2nd-order polynomial function of t ′ within ∆t. The coeffi-
cients of the polynomial can be solved using data from the two earlier time steps. Then, the integral
can be analytically integrated.
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7 Numerical Schemes

7.1 Finite Element Method Implementation in SAM

Because of its dependence on the MOOSE framework, SAM numerical models are implemented
in finite element method (FEM). In essence, FEM tries to find a solution function that is made up
of “shape functions” multiplied by coefficients and added together, to approximate the solution to
the governing equations. For the basics of FEM, interested readers can refer to a wide range of
references available in the literature. It will not be discussed in this document.

SAM uses the continuous Galerkin finite element method and the Language shape functions.
Both are available through the MOOSE framework. The key implementation in SAM is thus the
weak forms of the governing equations discussed in Chapters 2 and 3.

For the left sides of the fluid flow equations Eq. (2.2), the weak form of each term can be given
as: (

∂ρ

∂ t
,ψ

)
=

(
∂ρ

∂T
∂T
∂ t

,ψ

)
(

∂ρu
∂ t

,ψ

)
=

(
u

∂ρ

∂T
∂T
∂ t

+ρ
∂u
∂ t

,ψ

)
(

∂ρH
∂ t

,ψ

)
=

(
H

∂ρ

∂T
∂T
∂ t

+ρCp
∂T
∂ t

,ψ

)
(

∂ (ρu)
∂ z

,ψ

)
=−(ρu,∇ψ)+ 〈ρun̂,ψ〉(

∂ (ρuu)
∂ z

,ψ

)
=−(ρuu,∇ψ)+ 〈ρuun̂,ψ〉(

∂ (ρuH)

∂ z
,ψ

)
=−(ρuH,∇ψ)+ 〈ρuHn̂,ψ〉

(7.1)

In which, ( f ,ψ) =
∫

Ω
ψ · f dΩ, and it represents the integration of function f multiplied by the

“test” function over volume Ω; 〈 f n̂,ψ〉=
∫

S f n̂ ·ψdS , and it represents the integration of function
f multiplied by the “test” function over surface S, n̂ is the normal direction to the surface S. Note
that the above weak form utilizes the Gauss’s Divergence Theorem for the volume integral of the
divergence terms. ∫

V
∇ ·FdV =

∫
S
(F · n̂)dS (7.2)

The weak forms of other terms in the fluid equation and the heat conduction equations can be
derived in the similar fashion. The resulting terms in volume integral forms are implemented as
MOOSE Kernels, while the terms in surface integrals are implemented as MOOSE IntegratedBCs.

7.1.1 Spatial Discretizations

In SAM, both linear elements (EDGE2 in 1-D and QUAD4 in 2-D in libMesh) and the second-
order elements (EDGE3 and QUAD9 in libMesh) are available for use in the finite-element dis-
cretization of fluid flow and solid structures. For first-order elements using piece-wise linear La-
grange shape functions, the trapezoidal rule is recommended for the numerical integration; while the
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Gaussian quadrature rule is recommended for second-order elements (with second-order Lagrange
shape functions) in SAM. In one-dimensional analysis,

Trapezoidal rule:
∫ b

a
f (x)dx = (b−a)

[ f (a)+ f (b)]
2

(7.3)

Gaussian quadrature rule:
∫ b

a
f (x)dx = ∑

qp
f (xqp)wqp (7.4)

In which xqp is the quadrature point, and wqp is the weight. In SAM, the Gauss-Legendre
quadrature is used (through MOOSE and LibMesh); and the quadrature points and weights are well
defined.

In one-dimensional analysis, it is well known that trapezoid formula with an interval h gives
error of the order O

(
h2
)
. On the other hand, the Gaussian quadrature rule can exactly integrate

polynomials of order 2n-1 with n quadrature points, and could have exponential convergence rates.
However, the error can be difficult to estimate as it depends on the 2n order derivative. The error
bound can be defined as (Kahaner et al., 1989),

Error =
∫ b

a
f (x)dx−∑

qp
f (xqp)wqp =

(b−a)2n+1 (n!)4

(2n+1) [(2n)!]3
f (2n) (ξ ) , a < ξ < b. (7.5)

It can be concluded that SAM spatial discretization scheme is at least second-order accurate
with the first-order elements, and could have exponential convergence rates with the second-order
elements for continuous problems.

7.1.2 Temporal Discretizations

SAM supports a number of standard time integration methods (available in MOOSE) such as
the explicit Euler, implicit Euler (or backward Euler), and BDF2 (backward differentiation formula
- 2nd order method, Crank-Nicolson, and Runge-Kutta methods. For most reactor applications, we
recommend to use the implicit Euler or BDF2 methods with SAM.

The backward differentiation formula (BDF) is a family of implicit methods for the numerical
integration of ordinary differential equations. They are linear multistep methods that, for a given
function and time, approximate the derivative of that function using information from already com-
puted times, thereby increasing the accuracy of the approximation. Note that the first order method
of this family, BDF1, is equivalent to the backward Euler method. For a time-step-size ∆t, applying
the BDF methods to the ordinary differential equation:

∂u
∂ t

= f (u, t) (7.6)

would result in:

f
(
un+1, tn+1)= un+1−un

∆t
+O(∆t) , Backward Euler or BDF1; (7.7)

f
(
un+1, tn+1)= 3

2 un+1−2un + 1
2 un−1

∆t
+O

(
∆t2) ,BDF2. (7.8)
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It can be conclude that SAM temporal discretization can be second-order accurate when using
the BDF2 scheme. The performance of the SAM FEM model and the effects of the spatial and
temporal discretization schemes can be found in References (Hu, 2015, 2017).

7.2 Solution Methods

The Jacobian-Free Newton Krylov (JFNK) solution method is used to solve the whole SAM
system of equations. The JFNK method is a multi-level approach, the outer Newton’s iterations
(nonlinear solver) and inner Krylov subspace methods (linear solver), in solving large nonlinear
systems. The concept of ‘Jacobian-free’ is proposed, because deriving and assembling large Ja-
cobian matrices could be difficult and expensive. One feature of JFNK is that all the unknowns
are solved simultaneously in a fully coupled fashion. This solution scheme avoids the errors from
operator splitting and is especially suitable for conjugate heat transfer problems in which the heat
conduction in the solid is tightly coupled with the fluid flow.

However, in most applications, the Krylov subspace methods require preconditioning to be ef-
ficient. Although the JFNK method is used, the entries of the Jacobian matrix are still derived and
implemented for the preconditioning purpose. The execution speed of the code strongly depends on
the number of nonlinear (Newton) and linear (Krylov) iterations. The details of the JFNK method
and some preconditioning techniques can be found in Knoll and Keyes (2004).

Assuming that the FEM discretized equations form a system of discretized nonlinear equations:

F(u) = 0 (7.9)

Where F represents the nonlinear equation system and u is the unknown vector. Newton’s method
iteratively solves the above nonliner system by solving a series of linearized system:

J
(

uk
)

δuk =−F
(

uk
)

(7.10)

with a given initial guess to the unknown vector u0, and updates the solution as uk+1 = uk +δuk. In
equations above, J is the associated Jacobian matrix and J

(
uk
)
= F′

(
uk
)
= dF(u)

du |uk .
The Newton iteration is terminated if the nonlinear residual is sufficiently small, or based on a

required drop in the norm of the nonlinear residual∥∥F
(
uk
)∥∥

‖F(u0)‖
< tolerance, (7.11)

and/or a sufficiently small Newton update:∥∥δuk
∥∥

‖uk‖ < tolerance. (7.12)

For a scalar problem with n equations and n unknowns, F(u)= {F1,F2, . . .Fn} and u= {u1,u2, . . .un},
and the (i, j)-th element of the Jacobian matrix is

Ji j =
∂Fi (u)

∂u j
. (7.13)
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In the JFNK approach, a Krylov method is used to solve the linear system of equations given
by Eq. (7.10). An initial linear residual, r0, is defined, given an initial guess, δu0, for the Newton
correction,

r0 =−F(u)−J(u)δu0 (7.14)

Note that the nonlinear iteration index k in Eq. (7.10) has been dropped since the Krylov iter-
ation is performed at a fixed k. Let j be the Krylov iteration index, the jth iteration δu j is drawn
from the subspace spanned by the Krylov vectors, {r0,Jr0,J2r0, . . . ,J j−1r0} , and can be written as

δu j = δu0 +
j−1

∑
i=0

βiJir0 (7.15)

where the scalars βi minimize the residual ‖F(u)+J(u)δu j‖ in a least-squares sense.
As evidently shown in above equations, the JFNK method does not require the explicit forma-

tion of the Jacobian matrix, instead it only needs the action of the Jacobian only in the form of
matrix–vector products, which can be approximated by

Jv≈ [F(u+ εv)−F(u)]
ε

(7.16)

where ε is a small perturbation.
However, in most applications, the Krylov subspace methods require preconditioning to be effi-

cient. Using right preconditioning, Eq. (7.10) becomes(
JP−1)(Pδu) =−F(u) , (7.17)

in which P represents the precondition matrix (or process) and P−1 is the inverse of the precondi-
tioning matrix.

Right preconditioning is realized through a two-step process. First solve(
JP−1)w =−F(u) , (7.18)

for w. Then solve

δu = P−1w. (7.19)

for δu. Note that while we may refer to the precondition matrix P, operationally the algorithm only
requires the action of P−1 on a vector. The right-preconditioned version of Eq. (7.16) is:

JP−1v≈
[
F
(
u+ εP−1v

)
−F(u)

]
ε

. (7.20)

This operation is done once per linear iteration, and is actually done in two steps:

1. Preconditioning: Solve for y in Py = v.

2. Perform matrix-free product Jy≈ [F(u+ εy)−F(u)]/ε .
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7.3 Preconditioning Matrix

As mentioned above, a Krylov-type of method generally requires preconditioning to be efficient
and effective. It is also well known that the closer the preconditioning matrix is to the exact Jacobian
matrix, the better the convergence behavior. In SAM, an approximated Jacobian matrix is computed
and passed to the underlying numerical solver library (PETSc) for the pre-conditioning purpose, as
the exact Jacobian matrix is very difficult to obtain and not necessary. For one-dimensional flow
and heat conduction problems, tri-diagonal terms, due to spatial discretization, are included in the
preconditioning matrix. Since conjugate heat transfer is a tightly coupled phenomenon between the
solid conduction and fluid flow, its Jacobian terms must be included. The Jacobian terms represent
the effect of one variable perturbation on the residuals of another variable.

7.3.1 Preconditioning of Flow Equations

The residual terms of fluid flow equations can be given for each primary variable (p, u, T ) as
(see Chapter 2):

rp =

(
∂ρ

∂ t
+

∂ (ρu)
∂ z

, ψ

)
+

(
ρ

∂u
∂ t

+ρu
∂u
∂ z

+
∂ p
∂ z

+ρg+
f

De

ρu|u|
2

, τPSPG ·∇ψ

)
ru =

(
∂ρu
∂ t

+
∂ρuu

∂ z
+

∂ p
∂ z

+ρg+
f

De

ρu|u|
2

,ψ

)
+

(
ρ

∂u
∂ t

+ρu
∂u
∂ z

+
∂ p
∂ z

+ρg+
f

De

ρu|u|
2

,τSUPG ·∇ψ

)
rT =

(
∂ρH

∂ t
+

∂ρuH
∂ z

−q
′′′
,ψ

)
+

(
ρCp

∂T
∂ t

+ρCpu
∂T
∂ z
−q

′′′
,τSUPG ·∇ψ

)
(7.21)

The diagonal Jacobian terms for internal nodes can be derived after applying Gauss’s Divergence
Theorem:

J (p, p) = τPSPG ·∇ψ

J (u,u) =

(
ρ

d ∂u
∂ t

du
+

dρ

dT
∂T
∂ t

)
·ψ−2ρu ·∇ψ± f

De
ρu ·ψ

+ τSUPG ·∇ψ ·

(
ρ

d ∂u
∂ t

du
+ρ

∂u
∂ z

+ρu
d ∂u

∂ z

du
+± f

De
ρu

)

J (T,T ) =
(

ρCp +
dρ

dT
H
)
·

d ∂T
∂ t

dT
·ψ−

(
ρCp +

dρ

dT
H
)

u ·∇ψ

+ τSUPG ·∇ψ ·

(
ρCp

d ∂T
∂ t

dT
+ρCpu

d ∂T
∂ z

dT

)
(7.22)

Non-diagonal terms are derived in a similar fashion and implemented in SAM, but not shown here.
Note in the equation above that the dependences of the friction coefficient, f , on the primary fluid
variables are neglected, but the dependences of density on the primary variables are considered.
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7.3.2 Preconditioning of Heat Conduction Equation

The residual term for heat conduction equation can be given as (see Chapter 3):

rTs =

(
ρCp

∂T
∂ t
−∇ · (k∇T )−Q

′′′
, ψ

)
(7.23)

The Jacobian term (for internal nodes) can then be derived as:

J (Ts,Ts) = ρCp ·
d ∂T

∂ t

dT
·ψ + k∇T ·∇ψ (7.24)

7.3.3 Preconditioning of Convective Heat Transfer Modeling

To model the convective heat transfer between fluids and structures, additional residual terms
are needed, and can be given as (see Chapter 3):

∆rsolid = 〈h(Ts−Tf ) ,ψ〉

∆r f luid =

(
h(Ts−Tf )

Pheated

Ac
,ψ + τsupg ·∇ψ

)
(7.25)

Note ∆ is used together with residual, indicating the residual terms in Eq. (7.22) will be added to
the other residual contributions to these entries of the full residual vector.

The Jacobian contributions from conjugate heat transfer can then be derived as:

J (Ts,Ts)≈ hψ

J (Ts,Tf )≈−hψ

J (Tf ,Ts)≈−h
Pheated

Ac
(ψ + τsupg ·∇ψ)

J (Tf ,Tf )≈ h
Pheated

Ac
(ψ + τsupg ·∇ψ)

(7.26)

In which Tf and Ts represent fluid and solid temperature, respectively. Note in Eq. (7.26) that the
dependencies of heat transfer coefficient, h, on the fluid and solid variables are neglected.

For a conjugate heat transfer problem with only one fluid block and one solid block in the
computational mesh, the shape of the preconditioning matrix looks like Figure 7.1, in which black
lines and dots represent the non-zero entries from the fluid flow within the fluid block and the heat
conduction within the solid block; and the red circles and dots represent the non-zero entries from
convective heat transfer between fluid and structures. A similar study on the preconditioning of
JFNK method for conjugate heat transfer problem is reported in (Zou et al., 2013).
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Figure 5-1: Preconditioning matrix for conjugate heat transfer problem  
(with lines, circles, and dots representing non-zero entries in the matrix) 

  
Figure 7.1: Preconditioning matrix for conjugate heat transfer problem (with lines, circles, and dots
representing non-zero entries in the matrix)
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8 Component Models

The physics modeling (fluid flow and heat transfer) and mesh generation of individual reactor
components are encapsulated as Component classes in SAM along with some component specific
models. A set of components has been developed based on the models presented in Chapter 2-4
including:

1. basic geometric components;

2. 0-D components for setting boundary conditions;

3. 0-D components for connecting 1-D components;

4. assembly components by combining the basic geometric components and the 0-D connecting
components; and

5. non-geometric components for physics integration.

A brief description of major SAM components is listed in Table . The physics models associated
with these components will be briefly discussed later in this Chapter.

Table 8.1: Major SAM Components

Component name Descriptions Dimension
PBOneDFluidComponent Simulates 1-D fluid flow using the primitive vari-

able based fluid model
1-D

HeatStructure Simulates 1-D or 2-D heat conduction inside solid
structures

1-D or 2-D

PBCoupledHeatStructure The heat structure connecting two liquid compo-
nents (1-D or 0-D).

1-D or 2-D

PBPipe Simulates fluid flow in a pipe and heat conduction
in the pipe wall.

1-D fluid,
1-D or 2-D
structure

PBHeatExchanger Simulates a heat exchanger, including the fluid
flow in the primary and secondary sides, convec-
tive heat transfer, and heat conduction in the tube
wall.

1-D fluid,
1-D or 2-D
structure

PBCoreChannel Simulates reactor core channels, including 1-D
flow channel and the inner heat structures (fuel,
gap, and clad) of the fuel rod.

1-D fluid,
1-D or 2-D
structure

PBDuctedCoreChannel Simulates reactor core channels with an outer heat
structure of the duct wall.

1-D fluid,
1-D or 2-D
structures

PBBypassChannel Models the bypass flow in the gaps between fuel
assemblies.

1-D

FuelAssembly Models reactor fuel assemblies composed of multi-
ple CoreChannels, representing different regions of
a fuel assembly (core, gas plenum, reflector, shield,
etc.).

1-D fluid,
1-D or 2-D
structure
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DuctedFuelAssembly Model reactor fuel assemblies composed of multi-
ple DuctedCoreChannels.

1-D fluid,
1-D or 2-D
structure

MultiChannelRodBundle Models the rod bundle with a multi-channel model,
in which multiple CoreChannels and the inter-
channel mixing are defined and created.

1-D fluid,
1-D or 2-D
structure

HexLatticeCore Models a hexagonal lattice core, in which the
CoreChannels and HeatStructures are defined and
created.

1-D fluid,
1-D or 2-D
structure

ReactorCore Models a pseudo three-dimensional reactor core; It
consists of member core channels (with duct walls)
and bypass channels.

1-D fluid,
1-D or 2-D
structure

HeatPipe Models a conventional 3-zone cylindrical heat
pipe. It consists of wall, wick, and vapor core re-
gion.

2-D cylin-
drical heat
structure

PBBranch Models a zero-volume flow joint, where multiple
1-D fluid components are connected.

0-D

PBSingleJunction Models a zero-volume flow joint, where only two
1-D fluid components are connected.

0-D

PBPump Simulates a pump component, in which the pump
head is dependent on a pre-defined function.

0-D

PBVolumeBranch Considering the volume effects of a PBBranch
component so that it can account for the mass and
energy in-balance between inlets and outlets due to
inertia.

0-D

CoverGas A 0-D gas volume that is connected to one or mul-
tiple liquid volumes.

0-D

PBLiquidVolume A 0-D liquid volume with cover gas (the liquid
level is tracked and the volume can change during
the transient).

0-D

StagnantVolume Models a stagnant liquid volume, with connections
to other 0-D volumes but no connections to 1-D
fluid components.

0-D

PBTDJ An inlet boundary in which the flow velocity and
temperature are provided by pre-defined functions.

0-D

PBTDV A boundary in which pressure and temperature
conditions are provided by pre-defined functions.

0-D

CoupledTDV A time-dependent-volume boundary in which
boundary conditions are provided by other codes
in coupled code simulation.

0-D

PipeChain A non-geometric component for connecting a
number of fluid components.

ND

ReactorPower A non-geometric component describing the total
reactor power.

ND

ChannelCoupling A non-geometric component for coupling two 1-D
fluid components (with energy exchange).

ND

RadiationHeatTransferCoupling A non-geometric component for modeling the ra-
diation heat transfer between two surfaces.

ND
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8.1 PBOneDFluidComponent

PBOneDFluidComponent is the most basic fluid component in SAM. It represents a unit one-D compo-
nent to simulate the one-D fluid flow in a channel. The geometry parameters such as the hydraulic diameter,
flow area, and length, are provided in the input file. The wall friction and heat transfer coefficients can be
calculated through the closure models based on flow conditions and geometries or provided by the user input.
Internal volumetric heating (or cooling) can be specified by the user input as well. The physics models of
PBOneDFluidComponent are described in Chapter 2 and 4.

8.2 HeatStructure

HeatStructure is the most basic solid structure component in SAM. It represents a unit one-D or two-D
component in Cartesian or cylindrical coordinates to simulate the heat conduction in solid structures. The
geometry parameters such as the thickness and length are provided in the input file. Temperature-dependent
solid material properties can be provided in tabular or functional form user-supplied data. Internal volumetric
heating can be specified by the user input. The physics model of HeatStructure is described in Chapter 3.

8.3 PBCoupledHeatStructure

PBCoupledHeatStructure simulates a HeatStructure with controlled boundary conditions at the two sur-
faces, such as adiabatic, fixed temperature, convective heat transfer with ambient, or coupled with 0-D liquid
volume or 1-D liquid components. Normally users will not directly use HeatStructures to create their models,
but use PBCoupledHeatStructure instead.

8.4 PBPipe

PBPipe simulates fluid flow in a pipe and heat conduction in the pipe wall. It is composed of a PBOneD-
FluidComponent and an outer HeatStructure (pipe wall). Convective heat transfer between the fluid and the
wall is modeled, and various type of boundary conditions at the outer surface of the pipe wall can be modeled,
including adiabatic, fixed temperature, fixed heat flux, convective heat transfer with ambient, or coupled with
other 0-D liquid volumes or 1-D liquid components.

8.5 PBHeatExchanger

PBHeatExchanger simulates a heat exchanger, including the fluid flow in the primary and secondary
sides, convective heat transfer, and the heat conduction in the tube wall. Both countercurrent and concurrent
heat exchangers can be modeled. The two sides of the heat exchanger can have different orientation, lengths,
flow areas, and hydraulic diameters. This gives the users more flexibilities to model a generic heat exchanger,
including advanced heat exchangers being pursued by advanced reactor designs. Note that the two fluid sides
of the heat exchanger and the tube wall must have the same number of elements axially.

8.6 PBCoreChannel/ PBDuctedCoreChannel and
FuelAssembly/DuctedFuelAssembly

PBCoreChannel simulates the average coolant flow in rod bundles and heat conduction inside a fuel rod,
as well as the convective heat transfer between the coolant and the fuel rod. It is composed of a PBOneD-
FluidComponent and a HeatStructure. This is also the so-called “Single-Channel” approach to model the
fuel assembly. Axial power profiles and the power fractions of total reactor power can be specified for the
component. If an outer structure (duct wall) is added to PBCoreChannel, it becomes PBDuctedCoreChannel,
which simulates the ducted fuel assemblies as those in SFRs.
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FuelAssembly or DuctedFuelAssembly model the reactor fuel assemblies composed of multiple PB-
CoreChannels or PBDuctedCoreChannels, representing different axial regions of a fuel assembly including
the active core, gas plenum, lower and upper reflector, lower and upper shield, etc. The junction components
(PBSingleJunction) are also auto-created in FuelAssembly or DuctedFuelAssembly to model the connection
among the fluid parts of PBCoreChannel or PBDuctedCoreChannel.

8.7 PBBypassChannel
PBBypassChannel is just a PBOneDFluidComponent component with additional physics models. It is

designed to model the bypass flow in the gaps between fuel assemblies. It includes the modeling of conjugate
heat transfer with the neighboring fuel assembly duct walls. It can also model the direct coolant heating as a
fraction of the total reactor power and using the same or different axial power shapes.

8.8 Multi-Channel Rod Bundle (MultiChannelRodBundle) Model
To improve the heat transfer between the duct wall and coolant flow, a multi-channel rod bundle model is

developed in SAM to account for the temperature differences between the center region and the edge region
of the coolant channel in a fuel assembly. Similar approach has been proposed in ENERGY (Yang and Joo,
1999), SAS4A/SASSYS-1 (Fanning, 2012), as well as the multi-region porous medium model reported by
Yu et al. (2015). The whole fuel assembly can be divided into a number of regions, as shown in Figure . It
is quite remarkable that the volumetric heat flux in region 1 is significantly less than that in other regions,
based on analytical calculations. Each inner region is modeled as an average core-channel (i.e., a 1-D coolant
channel and an average fuel pin). The edge region can be modeled as one core-channel or six core-channels
to account for the differences in heat transfer with each side of the duct wall. This zoning strategy is also
inspired from the authors’ previous experiences in the CFD simulations of the triangle-lattice pin bundles. As
shown in the Hu and Yu (2016), large temperature gradient were observed in the coolant region near the duct
wall, but the temperature distribution elsewhere is very uniform except the hot spots due to the wire-wrap
effects.
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Figure 6-1: Sketch of the regions in the multi-channel model  
 

In the SAM multi-channel model, the fluid regions are modeled as separate parallel channels 
with the same pressure drop. For simplicity, it is assumed that there are no mass and momentum 
exchange between channels. However, the energy exchange is allowed at all axial nodes, and the 
energy exchange rate is modeled as:  
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in which, & is the mixing parameter (accounting for both turbulent mixing and directional flow); 
(())+,- is the average mass flux between Region 1 and 2; . the total gap width between Region 
1 and 2; and ℎ0 and ℎ2 are the enthalpies of Region 1 and 2.  
 

Qv1 

Qv2 

Qv1<Qv2 

Figure 8.1: Sketch of the regions in the multi-channel model

In the SAM multi-channel model, the fluid regions are modeled as separate parallel channels with the
same pressure drop. For simplicity, it is assumed that there are no mass and momentum exchange between
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channels. However, the energy exchange is allowed at all axial nodes, and the energy exchange rate is
modeled as:

dQ̇
dz

= β (ρv)avg S (h1−h2) (8.1)

in which, β is the mixing parameter (accounting for both turbulent mixing and directional flow); (ρv)avg is
the average mass flux between Region 1 and 2; S the total gap width between Region 1 and 2; and h1 and h2
are the enthalpies of Region 1 and 2.

This term is modeled as an additional heat source term in the fluid energy conservation equation,

q′′′mix =
1
Ac

dQ̇
dz

= β (ρv)avg (h1−h2)
S
Ac

. (8.2)

Because the SUPG stabilization scheme is used in SAM, the associated stabilization term need to be included
in the residual calculation for each finite element:

∆renergy =
∫

Ω

ψ ·q′′′mixdΩ = ∑
i,qp

(
q′′′mix× (ψ + τsupg ·∇ψ)

)
, (8.3)

In which, i is the index of the test functions and qp is the index of quadrature points for the element.

8.9 HexLatticeCore

HexLatticeCore models a reactor core with a hexagonal lattice such as SFRs. It can automatically gen-
erate the core lattice of MultiChannelRodBundle or PBCoreChannel components, and the inter-assembly
structures (including duct walls and inter-assembly gaps), based on the geometry information specified in the
input.

8.10 HeatPipe

HeatPipe models a conventional 3-zone cylindrical heat pipe, see Figure 8.2. Along the axial direction,
the heat pipe is divided to 3 zones: evaporator, adiabatic, and condenser. Along the radial direction, the heat
pipe consists of vapor core, wick, and wall blocks. In the current SAM modeling of the heat pipe, phase
transition of the fluid is not considered. The vapor core is modeled as a perfect conductor with high thermal
conductivity. This approximation is based on the fact that the thermal resistance in the vapor core is small
under normal operation conditions. Flexible boundary condition options are provided in the evaporator and
condenser wall outer surface to enable the coupling of heat pipe with other SAM components.
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Figure 8.2: Sketch of a conventional 3-zone cylindrical heat pipe

8.11 PBBranch
PBBranch models a 0-D flow junction where multiple 1-D fluid components are connected. The govern-

ing equations of the PBBranch Component are:

n

∑
i=1

(ρuA~n)i = 0 (8.4)

ubranch =
∑

n
i=1 (ρuA)i

ρbranchAbranch
if (u ·~n)i > 0 (8.5)

Hbranch =
∑

n
i=1 (ρuAH)i

ρbranchubranchAbranch
if (u ·~n)i > 0 (8.6)

In which,
ρ: the density at the connecting nodes;
u: the flow velocity at the connecting nodes;
~n: the flow direction at the connecting nodes;

ubranch: the flow velocity at the branch;
A: the flow area of the connecting components;
n: the number of connecting components;

H: the enthalpy at the connecting nodes;
Hbranch: the enthalpy at branch.

Note that simplified models are used to calculate the branch temperature and velocity.
The above models are implemented in SAM using the MOOSE NodalConstraint system, along with

the use of scalar variables to represent the p, u, and T of the PBBranch. The boundary conditions of the
connecting pipe nodes are dependent on the branch conditions: If flow into branch,

Ppipe = Pbranch +∆Pacc +∆Pf orm (8.7)

If flow out of branch,

Ppipe = Pbranch +∆Pacc−∆Pf orm

(ρu)pipe = ρbranchupipe

(ρuH)pipe = ρbranchupipeHbranch

(8.8)
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In which,

∆Pacc =
1
2
(
ρu2)

branch−
1
2
(
ρu2)

pipe

∆Pf orm =
1
2

K
(
ρu2)

pipe

8.12 PBSingleJunction

PBSingleJunction is a special junction component, and it models a zero-volume flow joint where only two
1-D fluid components are connected. There are currently two options in the modeling of the single junction:

• Weak formulation. In the weak formulation model, the single junction does not model the mass,
momentum, and energy conservation at the junction, but to assure that the two connecting nodes (1
and 2) have consistent boundary conditions. This weak formulation is computationally efficient but
does not enforce mass and energy balance well.

• Strong formulation. In the strong formulation model, the mass, momentum, and energy conservation
at the junction are modeled the same way as PBBranch, see Eq. 8.4, 8.5, and 8.6. The reference area
of the junction is taken as the area of the input pipe. This strong formulation helps enforce mass and
energy balance.

The upstream fluid kinetic energy will be used for calculation of the form loss across this junction. Let
subscript 1 denote the upstream side.

(ρuA)1 = (ρuA)2(
p+0.5ρu2)

1 =
(

p+0.5ρu2)
2 +K ·

(
0.5ρu2)

1

(ρuAH)1 = (ρuAH)2

(8.9)

In which, K is the form loss coefficient that can be specified by either built-in model or user-provided value.
If K is a positive value, then there will be an additional positive pressure drop along the flow direction.

The built-in form loss coefficient model is based on the Borda-Carnot equation (Chanson, 2004). The
Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a
(sudden) flow expansion:

∆E = ∆(p+
1
2

ρu2) = ξ
1
2

ρ(u1−u2)
2 (8.10)

where ξ is an empirical loss coefficient between zero and one, 0 ≤ ξ ≤ 1. Notice that the gravity effect has
been ignored for the junction. For flow through a sudden expansion of pipe, the loss coefficient ξ for this
sudden expansion is approximately equal to one: ξ ≈ 1.0,

∆E = ∆(p+
1
2

ρu2) =
(

1− A1

A2

)2 1
2

ρu2
1 (8.11)

with A1 ≤ A2. Thus, the equivalent form loss coefficient is

Kexpansion =
(

1− A1

A2

)2
(8.12)

For flow through a sudden contraction of pipe, assuming a loss coefficient of ξ ≈ 1.0,

∆E = ∆(p+
1
2

ρu2) =
( 1

µ
−1
)(A1

A2

)2 1
2

ρu2
1 (8.13)
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with A1 ≥ A2. And, µ is the Weisbach contraction coefficient (Moffatt, 2005),

µ = 0.63+0.37
(A2

A1

)3
(8.14)

Thus, the equivalent form loss coefficient is

Kcontraction =
( 1

µ
−1
)(A1

A2

)2
(8.15)

8.13 PBPump

PBPump is another special junction component, and it simulates a pump component, in which the pump
head can be dependent on a pre-defined function. More complex pump models will be developed in future
SAM enhancements. Pumping power can be modeled and considered in the energy conservation of the
junction.

Qpump = PheadupumpApump (8.16)

8.14 PBVolumeBranch

PBVolumeBranch considers the volume effects of a junction component so that it can account for the
mass and energy in-balance between inlets and outlets due to inertia. The governing equations of the mass
and energy conservation for the PBVolumeBranch can be given as:

−d (ρV )

dt
+

n

∑
i=1

(ρuA~n)i = 0 (8.17)

−d (ρHV )

dt
+

n

∑
i=1

(ρuAH~n)i = 0 (8.18)

In which,
ρ: the density at the PBVolumeBranch component;
V : the volume of the PBVolumeBranch component;
t: time.

The momentum energy conservation is more difficult to model in this 0-D component. So instead, the
simplified model (Eq. (8.5)) is used to account for various pressure losses in the PBVolumeBranch component.
The boundary condition modeling for the connected fluid components of the PBVolumeBranch is the same as
the PBBranch, except that the gravity pressure drop is considered in PBVolumeBranch. If flow into branch,

Ppipe = Pbranch +∆Pacc +∆Pf orm +∆Pgrav (8.19)

If flow out of branch,

Ppipe = Pbranch +∆Pacc−∆Pf orm +∆Pgrav

∆Pgrav,i = ρbranch∆Hi
(8.20)

Note that the friction loss is neglected in the model. It is because the friction is dependent on the flow path,
and it is very difficult (and unphysical) to model the friction loss in the 0-D component. On the other hand,
the friction loss in a large volume is always very small. If it is deemed important, the orifice coefficient can
be adjusted to account for it.
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8.15 PBLiquidVolume

PBLiquidVolume is a special PBVolumeBranch, in which the volume can change, and the liquid level is
tracked during the transient. Therefore, an additional scalar variable, liquid level (L), and an auxiliary scalar
variable, liquid volume (V ), are added in the model.

In addition to the mass conservation, the liquid level and liquid volume have the following constraints:

L =
Pvol−Pgas

ρvolg
(8.21)

V =Vre f +
(
L−Lre f

)
Are f (8.22)

In which, Pgas is the cover gas pressure or atmosphere pressure (if it is open to the atmosphere).
The governing equations for the liquid volume physics can be re-organized as:

−
(

ρvolA
dL
dt

+V
dρ

dT
dT
dt

)
+

n

∑
i=1

(ρuA~n)i = 0 (8.23)

−
(

ρvolHvolA
dL
dt

+V
(

H
dρ

dT
+ρCp

)
dT
dt

)
+

n

∑
i=1

(ρhuA~n)i = 0 (8.24)

Pvol = Pgas +ρvolgL (8.25)

uvol =
∑

n
i=1 (ρuA)i
ρvolAvol

i f (u ·~n)i > 0 (8.26)

In which, P, T , L, and uvol are the primary state scalar variables; and ρvol and V are auxiliary scalar variables.
As discussion in Chapter 5, to use the JFNK method to solve the nonlinear system equations, it is im-

portant to provide approximate (diagonal and off-diagonal) Jacobian terms in the preconditioning matrix for
fast convergence. The Jacobian term, J (xi,x j), can be derived as the first order derivative of the Residuals of
variable xi over the variable x j,

J (xi,x j) = (Rxi)x j
=

∂Rxi

∂x j
(8.27)

Based on the governing equations above, the individual Jacobian terms can be derived:

J (L,L) =−ρvolA
dL̇
dL
−A

dρ

dT
dT
dt

J (L,Tvol) =−
dρ

dT
A

dL
dt
−V

dρ

dT
dṪ
dT

J (L, pi) = 0
J (L,ui) = ρiAi ·~ni

J (L,Ti) = 0

(8.28)

In which:
pi: pressure at the connecting nodes;
ui: flow velocity at the connecting nodes;
Ti: temperature at the connecting nodes.
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J (Tvol ,Tvol) =−
(

h
dρ

dT
+ρCp

)
A

dL
dt
−V

(
h

dρ

dT
+ρCp

)
dṪ
dT
−V

dT
dt

(
2

dρ

dT
Cp +ρ

dCp

dT

)
J (Tvol ,L) =−ρvolhvolA

dL̇
dL
−A

(
h

dρ

dT
+ρCp

)
dT
dt

J (Tvol , pi) = 0
J (Tvol ,ui) = ρiAihi ·~ni

J (Tvol ,Ti) = ρiAiuiCp,i ·~ni

(8.29)

J (uvol ,uvol) = 1
J (uvol , pi) = 0

J (uvol ,ui) =


(ρA~n)i
ρvolAvol

, (u~n)i > 0

0, (u~n)i < 0

J (uvol ,Ti) = 0

(8.30)

J (Pvol ,Pvol) = 1

J (Pvol ,Tvol) =−
dρ

dT
gL

J (Pvol ,L) =−ρvolg

J (Pvol , pi or ui or Ti) = 0

(8.31)

The other unmentioned off-diagonal Jacobian terms are neglected, such as

J
(
xi,volume,x j,volume

)
|i6= j = 0.0 (8.32)

As the set of scalar variables used in the PBLiquidVolume include all those used in PBVolumeBranch and
PBBranch component. The same set of boundary condition classes can be used to adjust the residual and
Jacobian calculation at the end nodes of the connecting pipes of the liquid volume.

8.16 CoverGas
CoverGas component is always used together with PBLiquidVolume component. It models a 0-D gas

volume that is connected to one or multiple liquid volumes. The gas volume is modeled as an ideal gas, and
the heat transfer between the cover gas and the liquid volumes is neglected. Its volume change is decided by
the volume changes of all connecting liquid volumes. Pgas is an auxiliary scalar variable, and it does not have
its own residual or Jacobian entries.

∆Vgas = ∑∆Vliquid volume,i (8.33)

PgasV γ
gas = constant (8.34)

8.17 StagnantVolume
StagnantVolume models a stagnant liquid volume, which has no connections to 1-D fluid components but

is allowed to connect to a 0-D volume or 1-D or 2-D heat structures for heat transfer. It is assumed that there
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is no net mass transfer between StagnantVolume and the connecting 0-D volumes. The governing equation
of the energy conservation for the StagnantVolume can be given as:

d (ρV H)

dt
+

n

∑
i=1

Q̇i = 0 (8.35)

In which,
ρ: average density of the StagnantVolume component;
V : total volume of the component;
H: average enthalpy of the volume component;
t: time;
n: the number of coupling heat transfer components;
Q̇: heat transfer with coupled heat structures or 0-D volumes.

For convective heat transfer with heat structures,

Q̇ =
∫

hconv (Tw−Tvol)dA. (8.36)

In which,
hconv: convective heat transfer coefficient;

Tw: structure wall temperature;
Tvol : volume temperature.

For heat transfer with other 0-D volumes through thermal mixing,

Q̇ = ṁmix∆H (8.37)

In which,
ṁmix: the effective mixing flow between 0-D volumes;
∆H: enthalpy differences between 0-D volumes.

8.18 PBTDJ

PBTDJ is an inlet boundary component in which the flow velocity and temperature are provided by user-
defined (time-dependent) functions. It provides boundary conditions to the connecting 1-D fluid components.

8.19 PBTDV

PBTDV is a boundary component in which the pressure and temperature are provided by user-defined
(time-dependent) functions. It provides boundary conditions to the connecting 1-D fluid components. Note
if the flow is flowing into the PBTDV, the temperature boundary condition will not be used by the connecting
fluid components.

8.20 CoupledTDV

CoupledTDV is a special PBTDV boundary in which boundary conditions are provided by other codes in
coupled code simulation.
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8.21 PipeChain
PipeChain is a non-geometric component for sequentially connecting a number of fluid components. It

will auto-generate the needed PBSingleJunction components between the specified fluid components. It is
developed for user friendliness.

8.22 ReactorPower
ReactorPower is a non-geometric component for describing the total reactor power, which can be depen-

dent on user-defined functions (such as describing the decay heat curve). The total reactor power variable is
used in core components such as PBCoreChannel and PBBypassChannel.

8.23 ChannelCoupling
ChannelCoupling is a non-geometric component for coupling two 1-D fluid components (with energy

exchange). It is intended to model the flow mixing between two parallel channels, using the models described
in Equations (8.1) - (8.3).

8.24 RadiationHeatTransferCoupling
RadiationHeatTransferCoupling is a non-geometric component for modeling of the radiation heat trans-

fer between two surfaces. The physics model is described in Chapter 3.
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9 Multi-Dimensional Fluid Model

In SAM, a unified multi-dimensional flow model has been developed and implemented to consider both
the general multi-dimensional flow model and the porous medium-based flow model. In this chapter, we
will discuss the governing equations, types of boundary conditions, and code implementation of the SAM
multi-dimensional model.

9.1 Flow Equations
In this section, we will start with the general multi-dimensional flow model in Subsection 9.1.1, followed

by a discussion of the porous-medium flow model in Subsection 9.1.2. A unified flow model based on these
two flow models will be discussed in Subsection 9.1.3.

9.1.1 General Multi-dimensional Flow Model

For the general multi-dimensional flow model, the set of balance equations for fluid flow in three dimen-
sions includes the mass, momentum, and energy balance equations:

∂ρ

∂ t
+∇ · (ρV) = 0, (9.1)

ρ
∂V
∂ t

+ρ(V ·∇)V+∇p−ρg−∇ · τ = 0, (9.2)

ρcp
∂T
∂ t

+ρcpV ·∇T −∇ · (k∇T )−q′′′ = 0, (9.3)

where V= [Vx,Vy,Vz]
T is the velocity vector. The convection term in the momentum equation, i.e., ρ(V ·∇)V,

can be explicitly expressed as:

ρ(V ·∇)V =

ρV · (∇Vx)
ρV · (∇Vy)
ρV · (∇Vz)

 (9.4)

If compressibility effects are considered, following Batchelor (1967), the viscous tensor, τ , can be ex-
pressed as

τ = µ

[
∇V+(∇V)T− 2

3
(∇ ·V)I

]
, (9.5)

and therefore,

∇ · τ = µ∇
2V+

1
3

µ∇(∇ ·V), (9.6)

where ∇V is a second order tensor with [∇V]i j = ∂Vi/∂x j, for i, j = x,y,z; and I is the identity tensor. The
Laplacian term, µ∇2V, is defined as

µ∇
2V = µ∇ · (∇V) = µ

∇2Vx
∇2Vy
∇2Vz

 . (9.7)

It is clear that the divergence term, ∇ ·V , is non-zero for compressible flows where the fluid density
depends on pressure, or for thermally expandable flows where the fluid density depends on temperature.
Typically, this term only contributes to negligible effects for low-speed flow conditions. For applications
of interest to SAM simulations, which typically do not involve highly compressible flow conditions, it is
reasonable to ignore this term, and thus,

∇ · τ = µ∇
2V . (9.8)

72



With this equality, the momentum equation (Equation 9.2) can be written as

ρ
∂V
∂ t

+ρ(V ·∇)V+∇p−ρg−µ∇
2V = 0. (9.9)

Although it is not our intention to develop SAM as a CFD tool, turbulence effects must be considered to
obtain physically plausible and numerically stable solutions. There are several turbulence models available,
ranging from the very simple zero-equation models to the more complex and widely used two-equation
models (i.e., k−ε and k−ω), and even more complex turbulence models with more equations. Zero-equation
models are easy to implement and computationally less expensive; however, they generally can only be
applied under very simple flow conditions. More complex turbulence models, such as the k− ε and k−ω

models, are more attractive options because of their larger validation domains; however, these models are
more computationally expensive, and therefore, are not considered in the current SAM development.

Nevertheless, when turbulence effects are considered, the molecular viscosity µ is replaced with the
effective viscosity µe f f . The effective viscosity includes the contributions from both the molecular-viscosity
and turbulent-viscosity effects, i.e.,

µe f f = µ +µt , (9.10)

where µt is the turbulent viscosity. Furthermore, the effects of turbulent flow on heat dissipation in the energy
equation also need to be considered. In a similar manner, the fluid thermal conductivity k is replaced with an
effective value, i.e.,

ke f f = k+ kt , (9.11)

where kt is the enhanced thermal conductivity due to turbulence effects, and is related to the turbulent viscos-
ity by

kt =
cpµt

Prt
, (9.12)

where cp is the specific heat and Prt the turbulent Prandtl number. While different values for Prt have been
reported by various resources (e.g., 0.85 by FLUENT), in this study we use the default value of 0.9 as reported
by Yoder (2016).

Currently, SAM provides two options to represent the turbulent viscosity. The first option is a simple
zero-equation model implemented in SAM that computes the turbulent viscosity on the basis of Prandtl’s
mixing-length theory (Iaccarino (2004)):

µt = ρL2
mix

√√√√2
i, j=3

∑
i, j=1

Si jSi j, (9.13)

where Si j = S = 1
2

[
∇V+(∇V)T

]
is the rate-of-strain tensor. It is noted that more complex zero-equation

models exist, which consider wall effects (e.g., the Cebeci-Smith and Baldwin-Lomax models) (Alfonsi
(2009)); however, these models were not implemented. Moreover, the second option in SAM allows the
user to import the turbulent viscosity from an external source. These turbulent-viscosity distributions can be
obtained from high-resolution CFD simulations or from machine learning models.

9.1.2 Porous-Medium Flow Model

To address the modeling and simulation needs of pebble-bed reactors such as high-temperature gas-
cooled or fluoride-salt-cooled reactors, a porous-medium-based multi-dimensional flow model (porous-medium
flow model) has recently been implemented in the SAM code. In nuclear reactor thermal-hydraulic analyses,
it is a common approach to utilize porous-medium flows to model the fluid flow and heat transfer in very
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complex geometries, such as the pebble-bed cores and tube bundles in steam generators. This subsection
provides a brief discussion of the porous-medium flow model currently implemented in SAM.

For the porous-medium flow model, we follow the models presented in Nield and Bejan (2013) with
some necessary extensions. The complete set of balance equations includes the mass, momentum, and energy
equations for the fluid phase, as well as the energy equation for the solid phase:

ε
∂ρ

∂ t
+∇ · (ρv) = 0, (9.14)

ρ
∂v
∂ t

+
ρ

ε
(v ·∇)v+ ε∇p− ερg+βv+α|v|v = 0, (9.15)

ερcp
∂T
∂ t

+ρcpv ·∇T −∇ · (εk∇T )−q′′′+awh(T −Ts) = 0, (9.16)

(1− ε)ρscp,s
∂Ts

∂ t
−∇ · (ks,e f f ∇Ts)−q′′′s +awh(Ts−T ) = 0, (9.17)

where subscript s denotes the solid phase, ε is the porosity of the pebble bed, and v is the so-called superficial
velocity, which is related to the intrinsic velocity V by v = εV. For the mass balance equation (Equation
9.14), we follow the same Equation 1.1 presented in Nield and Bejan (2013). For the momentum equation,
we use Equation 1.8 from Nield and Bejan (2013) as the basic model, and extend the drag term to include
both the linear viscous (Darcy) and quadratic (Forchheimer) terms. Other higher-order partial-derivative
terms, such as the Brinkman term analogous to the Laplacian term in the Navier-Stokes equation, are not
included. For fluid and solid energy equations, we follow Equations 2.2 and 2.1 of Nield and Bejan (2013),
respectively. It is noted that, for the diffusion term of the fluid energy equation, the porosity ε is moved into
the divergence, which seems more appropriate if local averaged fluid thermal conductivity is assumed to be εk
(see discussion in Section 3.2.1 of Kaviany (1995)). Nevertheless, the contribution of this conduction term to
energy transport is normally trivial compared to the convection term, especially under convection-dominant
conditions. It is also noted that, for the diffusion term of the solid energy equation, instead of using the
simple form of (1− ε)∇ · (ks∇Ts) given in Nield and Bejan (2013), we use ∇ · (ks,e f f ∇Ts), which is a more
sophisticated approach and requires an additional closure correlation to model ks,e f f , the effective thermal
conductivity of porous media. The last term in both the fluid-flow energy and solid-phase energy equations
are the convective heat transfer term, in which aw is the heating surface area density per unit volume, and h
is the heat transfer coefficient.

9.1.3 A Unified Model

As clearly shown in the previous two subsections, the general multi-dimensional fluid flow model and the
porous-medium flow model have many similarities. In many applications, there is also a need to include both
flow models in the same simulations. For example, in simulations of HTGR core multi-dimensional flows, it
is typical to model flows in both the top and bottom plena using the general multi-dimensional flow model
and flow through the pebble-bed core using the porous-medium approach. Therefore, a unified model based
on these two sets of flow equations has been developed to reduce the effort of code implementation, as well
as to ease the model input process when both flow models are needed in the same simulation.

For the unified flow model, the fluid mass, momentum, and energy balance equations are given as follows:

ε
∂ρ

∂ t
+∇ · (ρv) = 0, (9.18)

ρ
∂v
∂ t

+
ρ

ε
(v ·∇)v+ ε∇p− ερg+Fm = 0, (9.19)
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ερcp
∂T
∂ t

+ρcpv ·∇T −∇ · (εk∇T )−q′′′+Se = 0. (9.20)

The source term, Fm, in the momentum equation is given as

Fm =

{
−µ∇

2V (general model)
βv+α|v|v (porous-medium model)

, (9.21)

and the additional source term in the energy equation, Se, in the fluid energy equation is given as

Se =

{
0 (general model)
awh(T −Ts) (porous-medium model)

. (9.22)

It is noted that, if ε = 1, this model exactly reduces to the general multi-dimensional flow model given in
Subsection 9.1.1. For the simulation of a porous medium, where the solid structure is also modeled, the same
solid-phase energy equation, Equation 9.17, is used.

9.2 Boundary Conditions
In this section, the physical boundary conditions are discussed. Their mathematical form and implemen-

tation within the FEM will be discussed in the coming sections. We will concern ourselves with a limited set
of boundary conditions of engineering interest to SAM simulations, and by no means do we intend to list all
possibilities. This limited set of boundary conditions is discussed in the following subsections.

9.2.1 Inlet

For an inlet flow condition, the magnitude of the inlet velocity |vin| and inlet temperature Tin are to be
specified. Both parameters could be constant values, or functions of time and/or position. With a given inlet
velocity magnitude, local density computed from pressure (as part of the solution), and temperature (from
boundary conditions), the inlet mass flux can then be computed. The three velocity components for the inlet
flow will also be specified for the momentum equations, and obviously they have to be consistent with the
specified value for the magnitude of inlet velocity.

9.2.2 Pressure Outlet

For an outlet flow condition, it is typical to specify the outlet pressure pout , which could be a constant
value or a function of time and/or position. No fluid temperature should be given unless a reverse flow
condition is expected on part of or on the entire outlet boundary during a transient, which, if possible, should
be avoided by moving the pressure outlet further downstream. In addition, it is generally acceptable to deem
the viscous effects unimportant, and to allow them to be ignored at the pressure outlet boundary. The same
argument could be directly applied to the energy equation, such that the effect of the diffusion term on the
boundary is ignored.1

1First, in the context of incompressible flows, an outlet boundary condition is generally a different concept than a
prescribed pressure boundary condition. An outlet boundary condition is normally ascribed to an outlet that is far in the
downstream direction, where the gradients of all variables (except pressure) are zero (Versteeg and Malalasekera (2013)).
In general, it is not necessarily true that the velocity gradients will be zero on a prescribed pressure boundary. However, it
is generally safe to assume that those gradients are zero on the “transparent” outlet boundary for the advection-diffusion
equation (Griffiths (1997); Halpern (1986)), and it was found that the smaller the viscosity, the smaller the introduced
error (Halpern (1986)). The momentum equation is indeed an advection-diffusion equation, and the viscosity, which is
the kinematic viscosity for the momentum equation, is generally very small. A similar argument could be made for the
energy equation. To the energy equation, the thermal diffusivity is analogous to the kinematic viscosity in the momentum
equation. Thermal diffusivities of typical fluids of interest to our simulations are also generally very small, and therefore
it is acceptable to use the “transparent” boundary condition as well.
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9.2.3 Wall

For solid walls, we apply a non-penetrating condition, such that the mass flux normal to the wall is zero.
For the energy equation, several different boundary conditions could be applied. The simplest one to apply is
a Dirichlet type of boundary condition for the fluid temperature. A Neumann type of boundary condition can
also be applied, in which a wall heat flux is required. An adiabatic condition is a special Neumann boundary
condition, where the temperature gradient is zero. For the momentum equation, two types of boundary
conditions are considered:

• Non-slip wall
All velocity components are simply set to zero.

• Slip wall
Viscous effects at the wall can be neglected (viscous stress-free boundary). It is noted that a rigorous
implementation of generic slip-wall boundary conditions on a wall, using an arbitrary geometry, is
not a trivial task (Verfürth (1986, 1991); Mucha (2003)). A viscous stress-free boundary is really an
engineering simplification, and users should be cautious of the potential inaccuracies that could arise
from such a simplification.

9.3 FEM Implementation
As a MOOSE-based application, SAM uses a FEM to obtain the discretized equations, which are then

solved with the Jacobian-free Newton-Krylov (JFNK) method provided by the MOOSE framework. Instead
of directly solving the PDEs, SAM solves the so-called “weak form” of the PDEs. Using FEM, the weak
forms of the discretized equations are obtained by multiplying the governing equations by a test function, ψ ,
and then integrating over the domain. Here, we use the mass balance equation (Equation 9.18) as an example
to introduce several FEM concepts. By using integration by parts and applying the Divergence Theorem, we
obtain the weak form for the mass balance equation as

∫
Ω

ψ

[
ε

∂ρ

∂ t
+∇ · (ρv)

]
dΩ

=
∫

Ω

ψε
∂ρ

∂ t
dΩ+

∫
∂Ω

ψρv · n̂dΓ−
∫

Ω

∇ψ ·ρvdΩ,

=0,

(9.23)

where Ω is the domain of interest (i.e., volume), ∂Ω is the boundary of the domain (i.e., boundary
surface), and n̂ is the outward-pointing unit normal of the boundary surfaces. In the context of FEM, it is
common to use (,) to denote a volume integral, and 〈,〉 to denote a surface integral. It is also typical to write
the discretized equations in the residual form when the JFNK method is used.

Using the FEM notations, the residual forms of the unified multi-dimensional flow equations are given
as follows:

r′c =
(

ε
∂ρ

∂ t
,ψ

)
+

(
−ρv,∇ψ

)
+

〈
ρv · n̂,ψ

〉
, (9.24)

r′m =

(
ρ

∂v
∂ t

,ψ

)
+

(
ρ

ε
(v ·∇)v,ψ

)
+

(
ε∇p,ψ

)
+

(
− ερg,ψ

)
+Fm, (9.25)

r′e =
(

ερcp
∂T
∂ t

,ψ

)
+

(
ρcpv ·∇T,ψ

)
+

(
εk∇T,∇ψ

)
+

(
−q′′′+Se,ψ

)
+

〈
− εk∇T · n̂,ψ

〉
,

(9.26)
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and the residual form of the solid-phase energy equation (if applicable) is given as

rs =

(
(1− ε)ρscp,s

∂Ts

∂ t
,ψ

)
+

(
ks,e f f ∇Ts,∇ψ

)
+

(
−q′′′+Se,ψ

)
+

〈
− ks,e f f ∇Ts · n̂,ψ

〉
.

(9.27)

In the residual equations discussed above, the superscript “′” indicates that they are not in their final
forms, as additional stabilization terms will be added (see next section). The subscripts c, m, e, and s denote
the mass balance (continuity), momentum, fluid flow energy, and solid-phase energy equations, respectively.

The source term in its weak form, Fm, in the residual form of the momentum equation is

Fm =


(

µ∇v,∇ψ

)
+

〈
−µ∇v · n̂,ψ

〉
(general model)(

βv+α|v|v,ψ
)

(porous-medium model)
. (9.28)

9.3.1 Stabilization Scheme

It is well understood that stabilization schemes are necessary for the standard Continuous Galerkin FEM
to regulate spurious spatial numerical oscillations, when it is applied to convection-dominant problems. In
SAM, the SUPG and PSPG schemes are both implemented to resolve numerical instability issues. Both
schemes introduce additional terms into the original weak form of the balance equations. For the mass
balance equation, an additional PSPG term is added:

rc = r′c +
(

Rm,τPSPG∇ψ

)
, (9.29)

and for the momentum and energy equations, an additional SUPG term is added for each equation:

rm = r′m +

(
Rm,τSUPG,mv ·∇ψ

)
, (9.30)

re = r′e +
(

Re,τSUPG,ev ·∇ψ

)
, (9.31)

where Rm and Re are the raw residual forms of the momentum and the energy equation, respectively. These
equations are the original PDEs without being multiplied by the test function or integrated by parts, i.e.,

Rm = ρ
∂v
∂ t

+
ρ

ε
(v ·∇)v+ ε∇p− ερg+Fm, (9.32)

and

Re = ερcp
∂T
∂ t

+ρcpv ·∇T −∇ · (εk∇T )−q′′′+Se. (9.33)

The stabilization parameters are given as:

τPSPG =

[(
2
∆t

)2

+

(
2V
h

)2

+

(
4ν

h2

)2
]−1/2

, (9.34)

τSUPG,m =

[(
2
∆t

)2

+

(
2|v|

h

)2

+

(
4ν

h2

)2
]−1/2

, (9.35)
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and

τSUPG,e =

[(
2
∆t

)2

+

(
2|v|

h

)2

+

(
4α

h2

)2
]−1/2

, (9.36)

where V is a reference velocity magnitude, which, if not provided, is by default the local velocity magni-
tude |v|; ν the kinematic viscosity; α the thermal diffusivity; ∆t the time-step size; and h the local mesh size
(normally taken as the smallest edge length of the local mesh element). For more details on the PSPG/SUPG
theory, implementation, and additional references, we refer the reader to Hu (2019). It is also noted that the
solid-phase energy equation (Equation 9.17) for the original PDE, and Equation 9.27 for its weak form, do
not require stabilization schemes, as they are simply heat conduction equations.

9.4 Closure Correlations

In this section, closure correlations for pressure drop and heat transfer in porous media will be discussed
with a main focus on pebble bed applications.

9.4.1 Frictional Pressure Drop in Pebble Beds

It was Blake (Blake (1922)) who first successfully treated the pressure drop problem in porous beds (or
“packing materials” as referred to in the original article). Blake suggested a pair of two non-dimensional
parameters (Blake (1922); Ergun (1952); Fenech (2013)):

fk ≡
∆p
ρu2

dp

L
ε3

1− ε
(9.37)

and

Rem ≡
ρudp

µ (1− ε)
(9.38)

and proposed that fk could be correlated as a function of Rem, that is, fk = f (Rem). The term fk was referred
to as the Blake-type friction factor by Ergun, and Rem has been referred to as the modified Reynolds number
by many authors. Most empirical correlations proposed to predict frictional pressure drop through pebble
beds have followed such a formula.

There are also different ways to define the non-dimensional parameters. Two additional such parameters
are introduced here as they are closely related to the validation study presented in this report. In some studies,
for example, the KTA correlation (Fenech (2013); Nuclear Safety Standards Commission (1981)), the non-
dimensional pressure drag coefficient is given as

Ψ≡ ∆p
1
2 ρu2

dp

L
ε3

1− ε
, (9.39)

and it is obvious that,
Ψ = 2 fk; and fk = Ψ/2. (9.40)

Currently, we have selected and implemented three empirical correlations to predict frictional pressure
drop through porous pebble beds: (1) the classical Ergun correlation; (2) the KTA correlation, which is
widely used in pebble-bed reactor analysis applications; and (3) the Eisfeld and Schnitzlein correlation, which
explicitly considers the wall effect on pressure drop in pebble beds.

The Ergun correlation represents a classical correlation for predicting frictional pressure drop across
packed pebble beds. It was developed based on 640 experimental data points on various-sized spheres,
sand, pulverized coke, and various gases (carbon dioxide, nitrogen, methane, and hydrogen), and considered
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pressure drop through porous packed beds as a result of simultaneous kinetic and viscous energy losses
(Ergun (1952)):

∆p
L

= 150
(1− ε)2

ε3
µ

d2
p

u+1.75
1− ε

ε3
ρ

dp
u2 (9.41)

Based on Equation (9.41), the linear viscous drag coefficient and quadratic drag coefficient of the Ergun
correlation are

β = 150
(1− ε)2

ε2
µ

d2
p
, (9.42)

and

α = 1.75
1− ε

ε2
ρ

dp
, (9.43)

respectively. The non-dimensional frictional pressure drop coefficient is therefore

Ψ =
300
Rem

+3.5 . (9.44)

Unfortunately, the validity region and uncertainty range of the Ergun correlation were not provided.
The KTA correlation has been developed based on the review of published data and correlations from

about 30 papers (Fenech (2013)). The KTA correlation is given as (Fenech (2013); Nuclear Safety Standards
Commission (1981)):

∆p
L

= Ψ
1− ε

ε3
1
dp

ρu2

2
(9.45)

with the non-dimensional drag coefficient,

Ψ =
320
Rem

+
6

Re0.1
m

. (9.46)

Although the expression does not explicitly include the wall effect, the discussion provided in Fenech (Fenech
(2013)) suggests that the wall effect has been implicitly considered in the average void fraction of the pebble
bed, which is dependent on the pebble diameter-to-bed diameter ratio.

The linear viscous drag coefficient and quadratic drag coefficient are

β = 160
(1− ε)2

ε2
µ

d2
p
, (9.47)

and

α =
3

Re0.1
m

1− ε

ε2
ρ

dp
, (9.48)

respectively.
The reported validity region of the KTA correlation is:

• Reynolds number: 1 < Rem < 105

• Porosity of the bed: 0.36 < ε < 0.42

• Diameter ratio: curve fitting, see Nuclear Safety Standards Commission (1981)

• Height of bed: H > 5dp

and the uncertainty range is:

• ±15% with a confidence level of ±95%.
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Eisfeld and Schnitzlein (Eisfeld and Schnitzlein (2001)) performed a detailed analysis of more than 2,300
experimental data points, and found that the influence of the container walls on the pressure drop of packed
beds should be considered. Their investigation showed that Reichelt’s approach to correcting the original
Ergun equation for the wall effect is most promising, and they provided improved correlations obtained by
fitting the coefficients to their database.

Eisfeld and Schnitzlein provided three fitted correlations, one for spherical particles, one for cylinder
particles, and one for both spherical and cylinder particles. As our main focus is to provide modeling and
simulation capability for the (spherical) pebble-bed reactor designs, we include only the correlation for spher-
ical particles. The Eisfeld and Schnitzlein correlation for spherical particles is given as

∆p
L

=

[
154A2

w

Rem
+

Aw

Bw

]
1− ε

ε3
ρu2

dp
(9.49)

with the non-dimensional drag coefficient,

Aw = 1+
2(dp/Dbed)

3(1− ε)
, (9.50)

and

Bw =

[
1.15

(
dp

Dbed

)2

+0.87

]2

. (9.51)

Thus, the linear viscous drag coefficient and quadratic drag coefficient are

β = 154A2
w
(1− ε)2

ε2
µ

d2
p
, (9.52)

and

α =
Aw

Bw

1− ε

ε2
ρ

dp
, (9.53)

respectively. The non-dimensional frictional pressure drop coefficient is therefore

Ψ =
308A2

w

Rem
+

2Aw

Bw
. (9.54)

The reported validity region of the Eisfeld and Schnitzlein correlation is:

• Reynolds number: 0.01 < Red p < 17635 in which Red p = ρudp/µ

• Porosity of the bed: 0.330 < ε < 0.882

• Diameter ratio: 1.624≤ Dbed/dp ≤ 250

• Height of bed: not provided

and the uncertainty range is:

• Relative root mean square deviation, σ = 0.1613

• Maximum relative deviation at 95% confidence, f95 = 0.31

• Maximum relative deviation at 99% confidence, f99 = 0.48
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9.4.2 Pebble-to-fluid Heat Transfer

In pebble beds, in a unit volume, the heat transferred from pebbles to the surrounding fluid is computed
from the temperature difference between them, the pebble-to-fluid heat transfer coefficient, as well as the
total heat transfer area per unit volume (or heat transfer area density).

For the calculation of the heat transfer coefficient, the KTA model is implemented:

Nu = 1.27
Pr1/3

ε1.18 Re0.36 +0.033
Pr1/2

ε1.07 Re0.86 , (9.55)

and the pebble-to-fluid heat transfer coefficient can be obtained as

h =
Nuk
dp

, (9.56)

in which the Reynolds number is defined as

Re =
ρudp

µ
. (9.57)

The heat transfer area density is a pebble bed with pebble diameter dp can be obtained as

aw =
6(1− ε)

dp
, (9.58)

which can be found from the following two equations:

1− ε =
n
6

πd3
p , (9.59)

and
aw = nπd2

p , (9.60)

in which n is number of pebbles per unit volume.
The reported validity region of the KTA correlation is:

• Reynolds number: 100 < Re < 105

• Porosity of the bed: 0.36 < ε < 0.42

• Diameter ratio: Dbed/dp > 20

• Height of bed: H > 4dp

9.4.3 Wall-to-fluid Heat Transfer in Pebble Beds

In pebble bed HTGR designs, the heat transfer coefficient between the pebble bed and the surrounding
reflectors is an important parameter that affects the accurate prediction of core temperatures during transients
such as pressurized conduction cooldown (PCC). The wall-to-pebble-bed heat transfer had been the subject
of several past studies, from which empirical correlations were proposed, such as the Yagi and Wakao cor-
relation (Yagi and Wakao (1959)) and the Achenbach correlation (Achenbach (1995)). When deriving these
correlations, for example, Yagi and Wakao (Yagi and Wakao (1959)) assumed that the fluid and particle phase
were at thermal equilibrium. The wall-to-pebble-bed heat transfer is due to the temperature difference be-
tween the bed and the wall on the wall-to-pebble-bed interface, and the heat transfer coefficient is lumped
into a single parameter analogy to the classic convective heat transfer coefficient between a wall and a flow
field. It is worth noting that this assumption is inconsistent with the porous medium flow model of SAM,
which does not assume a thermal equilibrium between the two phases, i.e., see equation (9.16) and (9.17).
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To address such an inconsistence, additional assumption must be made. We assumes that the temperature of
solid phases, including both pebbles and walls that bound the pebble bed, is continuous across the pebble-
bed-to-wall interface; and thus the wall-to-pebble-bed heat transfer is applied to the fluid phase only. With
this assumption, wall-to-pebble-bed heat transfer coefficient can be seen as the wall-to-fluid heat transfer
coefficient.

Yagi and Wakao (Yagi and Wakao (1959)) correlation for the wall-to-pebble-bed heat transfer coeffi-
cient, hw, is given as:

hw

cpρu
Pr2/3 = 0.2Re−0.2 (9.61)

in which Re = ρudp/µ .
Using the conventional definition for the Nusselt number, i.e.,

Nuw =
hwdp

k
(9.62)

in which hw is the wall-to-pebble-bed heat transfer coefficient and k is the thermal conductivity of the fluid
phase. Yagi and Wakao correlation could be rewritten in terms of wall Nusselt number as:

Nuw = 0.2Re0.8Pr1/3 (9.63)

Yagi and Wakao suggested that the correlation is valid for Re > 20.
The Achenbach correlation (Achenbach (1995)) is quite similar to Yagi and Wakao correlation, but it

further considers the pebble-bed-diameter (Dbed) effect. The Achenbach correlation is given as:

Nuw =

(
1−

dp

Dbed

)
Re0.61Pr1/3 (9.64)

with a recommended valid region of 50 < Re < 2×104.

9.4.4 Effective Thermal Conductivity of Pebble Beds

For HTGR designs, the decay heat removal mechanism is quite different than that of most existing light-
water reactor designs. Instead active safety systems, HTGR designs are mainly relying on their passive
decay heat removal mechanism that utilizes its large vessel surface area as a way of transferring decay heat.
For example, during a postulated pressurized conduction cooldown (PCC) event, the majority of decay heat
is transferred from the core region radially to reactor core vessel surface via heat conduction, and then is
transferred to the Reactor Cavity Cooling System (RCCS) via thermal radiation and convection.

To support system level safety analysis of HTGR applications, correlations for effective thermal conduc-
tivity of pebble bed have been implemented in SAM. Although there exist a large number of such correlations
and their variances of different formulations van Antwerpen et al. (2010), most of them share common fea-
tures to account for several major heat transfer mechanisms, such as heat conduction through pebbles and
pebble contact areas, heat conduction/convection through the fluid, and thermal radiation from pebble to peb-
ble. Currently, two correlations have been selected and implemented in SAM, i.e., the Zehner, Bauer, and
Schlünder (ZBS) van Antwerpen et al. (2010); You et al. (2017)2 and IAEA IAEA (2000) correlations.

The Zehner, Bauer, and Schlünder (ZBS) model is given as,

ke f f

k f
=
(

1−
√

1− ε

)
ε

[
1

ε−1+κ
−1
G

+κr

]
+
√

1− ε [ϕκs +(1−ϕ)κc] (9.65)

2The original reference for the ZBS model is not available, and the ZBS model has been taken from these two refer-
ences. A cross check has been done to make sure that these two sources agree with each other.
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Of the ZBS model, the non-dimensional effective thermal conductivity related to fluid phase conduction,
κG, is simplified to be 1. The exact definition of this term is referred to (van Antwerpen et al., 2010) and (You
et al., 2017). The non-dimensional effective thermal conductivity related to thermal radiation is given as,

κr =
4σ

2/εr−1
T 3 dp

k f

with εr being the surface emissivity, σ the Stephan-Boltzmann constant, and dp the pebble diameter. The
non-dimensional effective thermal conductivity related to solid heat conduction is simple κ ≡ ks/k f . The last
contribution represents the heat transfer due to solid conduction, fluid conduction, and thermal radiation,

κc =
2
N

{
B(κ +κr−1)

N2κGκ
ln

κ +κr

B[κG +(1−κG)(κ +κr)]
+

B+1
2B

[
κr

κG
−B

(
1+

1−κG

κG
κr

)]
− B−1

NκG

}
with

B = 1.25
(

1− ε

ε

)10/9

and

N =
1

κG

(
1+

κr−BκG

κ

)
−B

(
1

κG
−1
)(

1+
κr

κ

)
For the IAEA model, it argues that there are several types of heat transfer mechanisms in pebble beds,

including radiation in void region, conduction of gas (fluid phase), conduction of spherical and convection
of gas (fluid phase). The IAEA effective thermal conductivity model includes all except for the gas phase
convection part, and therefore, it includes three parts: 1) solid conduction-void radiation-solid conduction
process, 2) solid conduction—gas conduction—solid conduction process, and 3) solid conduction—contact
area conduction—solid conduction process. The IAEA model is thus given as,

ke f f = kr
e f f + kg

e f f + kc
e f f (9.66)

The solid conduction-void radiation-solid conduction contribution to the total effective thermal conduc-
tivity is given as,

kr
e f f =

{[
1− (1− ε)1/2

]
ε +

(1− ε)1/2

2/εr−1
· B+1

B
· 1

1+ 1
(2/εr−1)Λ

}
4σT 3dp (9.67)

with

Λ =
ks

4σT 3dp

The solid conduction—gas conduction—solid conduction contribution is given as,

kg
e f f = k f

{
1−
√

1− ε +
2
√

1− ε

1−B/κ

[
(1−1/κ)B
(1−B/κ)2 ln

κ

B
− B+1

2
− B−1

1−B/κ

]}
(9.68)

The solid conduction—contact area conduction—solid conduction contribution is given as,

kc
e f f = ks

[
3(1−µp)

2

4Es
f R
]1/3 1

0.531S

(
NA

NL

)
(9.69)

with

f = p
SF

NA
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where NA and NL are the number of pebbles per unit area and length, respectively. R = dp/2 is the pebble
radius. For the simple cubic arrangement of pebbles,

S = 1
SF = 1

NA = 1/(4R2)

NL = 1/(2R)

For graphite, the Poisson ratio µp = 0.136 and the Young modules Es = 9×109 N/m2 are provided as default
values in current implementation. The external pressure p is related to the weight of pebbles in the pebble bed.
Although an exact formula was not given in the IAEA model (IAEA, 2000), based on the original discussion
provided in (Chan and Tien, 1973), one could reason that such a pressure is pebble bed depth-dependent, and
the pebble bed pressure can be computed as,

p = ρsg(1− ε)dz

where dz = z− z0 is the local bed depth with respect to the bed top surface at z0.

9.5 Species Transport
An additional capability needed for the multi-dimensional flow model component is the ability to model

mass transport of a species through the system. Especially for liquid-fueled Molten Salt Reactors (MSRs),
being able to model the transport of delayed-neutron precursors (DNPs) and decay heat precursors is impor-
tant with respect to neutronic and thermal hydraulic behavior. The 3D passive scalar equation to model mass
transport is shown below:

ρ
∂c
∂ t

+ρ

(
u

∂c
∂x

+ v
∂c
∂y

+w
∂c
∂ z

)
−D

(
∂ 2c
∂x2 +

∂ 2c
∂y2 +

∂ 2c
∂ z2

)
+λρc−S = 0 (9.70)

Where ρ is the fluid density, c is the species concentration density, D is the diffusion coefficient, λ is the
decay constant of the species, S is the production/removal rate of the species, and u, v, and w are the fluid
velocities in the x, y, and z directions, respectively.

The weak forms of the discretized equations are obtained by multiplying the governing equations by a
test function, and then integrating over the domain. The weak form of the equation above is represented as
shown below: (

ρ
∂c
∂ t

,ψ
)
+(ρ~u ·∇c,ψ)+(D∇c,∇ψ)−〈D∇c · n̂,ψ〉+(λρc,ψ)− (S,ψ) = 0 (9.71)

Where, ψ is the test function and n̂ is the boundary normal vector. As discussed above, parentheses represent
volumetric integrals and brackets represent surface integrals. From this, we can compute the residual terms
as shown below.

Ri =
(

ρ
∂c
∂ t

,ψi

)
+(ρ~u ·∇c,ψi)+(D∇c,∇ψi)−〈D∇c · n̂,ψi〉+(λρc,ψi)− (S,ψi) (9.72)

Note that stabilization schemes are necessary for the standard Continuous Galerkin FEM to regulate spurious
spatial numerical oscillations, when it is applied to convection-dominant problems. For the passive scalar
transport equation, an additional SUPG term is added, similar to what is discussed above in Section 9.3.1.
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10 Control System Models

10.1 Introduction

The SAM control and trip system are aimed to provide the capability to simulate the control and trip
systems typically used in hydrodynamic systems. The control system is used to perform the evaluation of
algebraic and simple ordinary differential equations (e.g. integraion and differentiation); the trip system is
used to perform the evaluation of logical statements.

The fundamental approximation made in the design of control/trip system is that the execution of con-
trol/trip system is de-coupled from the other parts of the hydraulic systems. The main execution of individual
control/trip units is set at the end of each time step.

ControlSystem

CSAddition

CSDivision

CSMultiplication

CSExponentiation

CSSTDFunction

CSDelay

CSUnitTrip

CSDifferentiation

CSIntegration

CSProportionIntegration

CSLeadLag

TripSystem

TSBoolean

TSCompare

TSDelay

Figure 10.1: SAM control and trip system

The control and trip system are implemented as ControlSystem and TripSystem class, respectively. In-
herited from the ControlSystem/TripSystem, a set of basic control/trip components are provided to handle
the different operations, e.g. addition, integration, comparison, and etc. A schematic of the design of control
and trip system is shown in Figure 10.1.

10.2 Control System

The control system is used to evaluate simultaneous algebraic and ordinary differential equations. The
main application of this new capability is to simulate control systems typically used in thermal-hydraulic
systems. The control system provides several types of control components. Each component defines a specific
function of input variable. The input variable could be the time-advanced quantities in the hydraulic systems,
output from control components, and output from trip components. The following list of control components
are currently provided:
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• CSAddition: addition/subtraction evaluation

• CSDivision: division evaluation

• CSMultiplication: multiplication evaluation

• CSExponentiation: power function evaluation

• CSSTDFunction: standard function evaluation

• CSDelay: delayed output evaluation

• CSUnitTrip: status of trip input

• CSDifferentiation: differentiation evaluation

• CSIntegration: integration evaluation

• CSProportionIntegration: proportional-integration evaluation

• CSLeadLag: lead/lag evalulation

The following subsections provides the mathematical description of the different control components. For
different control components, the following common notations are used:

• Y : output variable of control component

• V,Vi: input (i-th input) variable to the control component

• S: constant scaling factor

10.2.1 CSAddition

This control component computes the summation of its input variables.

Y = S(A0 +
N

∑
i=1

AiVi) (10.1)

where A0 is a constant bias, Ai is the i-th gain coefficient of i-th input variable, N is the total number of input
variables.

10.2.2 CSDivision

This control component compute the division of its input variables. If only 1 input is specified, the inverse
of the input variable is computed.

Y =
S

V1
or S

V2

V1
(10.2)

10.2.3 CSMultiplication

This control component compute the product of its input variables.

Y = S
N

∏
i=1

Vi (10.3)

where N is the total number of input variables.
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10.2.4 CSExponentiation

This control component compute the power of its input variables. If 2 input variables are specified, the
second input is taken as exponent to the power function.

Y = SV x
1 or SVV2

1 (10.4)

where x is exponent to the power function.

10.2.5 CSSTDFunction

This control component computes one of the standard function of its input variables.

Y = SF(V1,V2, · · ·) (10.5)

where F can be sin(V1), cos(V1), tan(V1), sinh(V1), cosh(V1), tanh(V1), |V1|, ln(V1), exp(V1),
√

V1, min(V1,V2, · · ·),
and max(V1,V2, · · ·). Only min and max function may take multiple input variables.

10.2.6 CSDelay

This control component return the input variable at a delayed time.

Y = SV1(t− td) (10.6)

where t is the current time and td is the delay time. History of the input variable is stored in form of (time,
value) pair. A user input is used to determine the maximum number of pairs to store. The deleyed function is
obtained by a liner interpolation of the stored history value.

10.2.7 CSUnitTrip

This control component return a value of 0.0 or 1.0 depending on the input trip status.

Y = SU(±tr) (10.7)

where tr is the input trip. The minus sign represent using complement of the input trip. U is 0.0 or 1.0
depending on the input trip tr being false or true.

10.2.8 CSDifferentiation

This control component compute derivative of the input variable.

Y = S
dV1

dt
(10.8)

The finite difference method is used to calculate the derivative by

Y = S
V n+1

1 −V n
1

∆t
(10.9)

where ∆t, V n+1
1 , and V n

1 are the time step, input variable value at the current step, and input variable value at
previous step, respectively. Differentiation operation is a noisy process and should be avoided if possible.
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10.2.9 CSIntegration

This control component compute integration of the input variable.

Y = S
∫ t

t0
V1dt (10.10)

where t0 is the simulation time when the component is added to the system. If initial value of this control
component is not provided, a default initial value of 0.0 is used.

The integration is advanced by the trapezoidal approximation

Y n+1 = Y n +S(V n
1 +V n+1

1 )
∆t
2

(10.11)

where ∆t is the current time step size, n+1 denotes the current step, and n denotes the previous step.

10.2.10 CSProportionIntegration

This control component compute proportional-integration of the input variable.

Y = S
(

A1V1 +A2

∫ t

t0
V1dt

)
(10.12)

where t0 is the simulation time when the component is added to the system, A1 is the proportional gain
coefficient, and A2 is the integration gain coefficient. The Laplace transform notation of this component is

Y (s) = S
(

A1 +
A2

s

)
V1(s) (10.13)

This component is advanced in time by

In+1 = In +(V n
1 +V n+1

1 )
∆t
2

(10.14)

Y n+1 = S(A1V n+1
1 +A2In+1) (10.15)

where I is an intermediate variable for storing the integration.
If an initial value is provided Team (2014), then Y 0 is the provided value and

I0 =
1

A2

(
Y 0

S
−A1V 0

1

)
(10.16)

otherwise,
I0 = 0 and Y 0 = SA1V 0

1 (10.17)

where V 0
1 is initial value of the input variable.

10.2.11 CSLeadLag

This control component computes the lead-lad of the input variable. The lead-lag component is defined
in Laplace transform notation as

Y (s) = S
(

1+A1s
1+A2s

)
V1(s) (10.18)

where A1 and A2 are the lead and lag time constant, respectively.
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This component is advance in time by

Y n+1 =

A1
A2

SV n+1
1 + In +[S(V n

1 +V n+1
1 )−Y n] ∆t

2A2

1+ ∆t
2A2

(10.19)

and the intemediate variable I is advanced by

In+1 = In +[S(V n
1 +V n+1

1 )−Y n−Y n+1]
∆t

2A2
(10.20)

If an initial value is provided Team (2014), then Y 0 is the provided value and

I0 = 0 (10.21)

otherwise,

Y 0 = SV 0
1 and I0 =

(
1− A1

A2

)
SV 0

1 (10.22)

where V 0
1 is initial value of the input variable.

If the lag time constant is specified as zero, which represents a lead operation, the previous evaluation is
invalid A2 = 0. In this case, the Laplace transform becomes

Y (s) = S (1+A1s)V1(s) (10.23)

or in time domain notation as

Y = S
(

V1 +A1
dV1

dt

)
(10.24)

which is advanced in time by

Y = S

(
V1 +A1

V n+1
1 −V n

1
∆t

)
(10.25)

10.3 Trip System

The trip system is used for the evaluation of logical statements. Each trip object consists of a logical
variable that has a true or false result and an associated variable, TIMEOF. The TIMEOF member variable is
-1.0 whenever the trip is false, and is set to the time when the trip was last set true. A trip component can be
latched or unlatched. A latched trip, once set true, is no longer tested and remains true for the remainder of
the problem. An unlatched trip is evaluated and advanced every time step Team (2014).

Two kind of trip componet are currently provided:

• TSCompare: is the type of variable trip and performs the comparison of its input variables

• TSBoolean: is the type of logical trip and performs the boolean of its input signals

• TSDelay: follows the signal of its input trip component but with a time delay

The following subsections provides the mathematical description of the different trip components. For
different trip components, the following common notations are used:

• Tr: signal (true or false) of the trip component

• OP: operation type
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10.3.1 TSCompare

This trip component performs the comparision of its input variables.

Tr =V1OP(V2 +C) (10.26)

where C is a user-specified constant bias. The operation OP is one of the following relational operations: EQ
is equal, NE is not equal, GT is greater than, GE is greater then or equal, LT is less than, and LE is less than
or equal.

10.3.2 TSBoolean

This trip component performs the boolean operation of the input trip signals.

Tr = Tr,1OPTr,2 (10.27)

The operation OP is one of the logical operations: AND, OR (inclusive or), NAND (not-and), NOR (not-ro),
XOR (exclusive or), and XNOR (exclusive NOR). An extra operation (NOT) is also available if only 1 input
is specified for taking the complement of the input trip.

10.3.3 TSDelay

This trip component returns the signal of its input trip with a delayed time

Tr = Tr,1(t− td) (10.28)

where Tr,1 is the input trip signal, t is the current time, and td is the delay time. This compoponent makes use
of TIMEOF value of input trip. The output signal is set to true if the input signal is true and t− td is larger
than TIMEOF value of the input trip.
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11 Multi-Scale Multi-Physics Simulations

In additional to the physics and component model development, a flexible coupling interface has been
developed so that multi-scale multi-physics modeling capabilities can be achieved by coupling SAM with
other high fidelity or conventional simulation tools.

11.1 SAM coupling with CFD Codes
For practical nuclear engineering applications, multi-scale thermal fluid analysis by adopting the com-

bined use of different scale computational tools, such as system thermal-hydraulics and CFD codes, is vital
when three-dimensional effects play an important role in the evolution of a given transient or accident sce-
nario. Careful control of data exchange flow and the time-synchronization is essential for a numerically
stable and physically valid coupled code simulation. The general issues of coupling of system code and CFD
code have been addressed in Hu et al. (2013), including data exchange method, driving mechanism, time
synchronization scheme, and the selection of data for exchange. The coupling strategy between SAM and
STAR-CCM+ was developed and implemented based on these considerations and the characteristics of each
code. STARCCM+ is a general-purpose commercial CFD code that uses a finite volume formulation for the
analysis of compressible and incompressible flows and heat transfer, and it has been applied in a wide range
of engineering application including the simulations of nuclear reactor systems. The details of the coupling
strategy and the implementation can be found in Hu et al. (2013). Similar strategy for the coupling of SAM
and STAR-CCM+ is also applied to other multi-scale or multi-physics code coupling applications.

The multiscale coupling capability has been demonstrated in the coupled SAM and STARCCM+ code
simulation of the Advanced Burner Test Reactor (Chang et al., 2006) PLOF transient. The importance of
the multi-resolution capability was demonstrated by the multi-dimensional flow and the formation of thermal
stratification layers in the outlet plenum and cold pool of the ABTR during the postulated transient. The
details of the demonstration simulation can be found in Hu et al. (2014a).

11.2 SAM coupling with SAS4A/SASSYS-1
SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events

as well as design basis and beyond design basis accidents for advanced liquid-metal-cooled nuclear reac-
tors (Fanning, 2012). SAS4A/SASSYS-1 contains a primary and intermediate system modeling compo-
nent, PRIMAR-4. PRIMAR-4 can represent complex arrangements of coolant system components including
pumps, piping, valves, intermediate heat exchangers, air dump heat exchangers, steam generators, etc. In
addition to its capabilities, PRIMAR-4 has some shortcomings. The most significant shortcomings are in
the form of data management, code structure, and user input limitations. Outdated data management and
code structure makes extension of the PRIMAR-4 module difficult. The user input format for PRIMAR-4
limits the number of volumes and segments that can be used to describe a given system. Coupling with SAM
will provide an alternative to PRIMAR-4 for primary, secondary, and decay heat coolant system modeling
capabilities that are more flexible and extensible.

To combine the advantages of SAS4A/SASSYS-1 and SAM, a coupling strategy has been defined that re-
tains the full complement of core (in the reactor sense) modeling capabilities of SAS4A/SASSYS-1 - coolant
channel and sub-channel thermal hydraulics, sodium boiling, fuel restructuring and relocation, in-pin fuel
melting, cladding failure, and fuel and clad melting and relocation - and adds the option to use SAM for
the primary, intermediate, and decay heat coolant systems. In this approach, the modeling capabilities of
PRIMAR-4 will be retained to maintain continuity of simulation capabilities. The coupling effort was suc-
cessful and is demonstrated by evaluating an unprotected loss of flow transient for the ABTR design. The
coupling strategy and the demonstration of the coupled code simulation are detailed in (Fanning and Hu,
2016).

A separate effort was pursued to enable the SAM- SAS4A/SASSYS-1 coupling capability at the solid-
liquid interface for potential use of the Versatile Test Reactor (VTR) program. A coupling boundary has been
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identified at the VTR test vehicle and primary coolant interface, where SAS4A/SASSYS-1 treats primary
coolant thermodynamics, while SAM treats all thermodynamic and reactivity behavior within the test vehicle,
including the vehicle walls (Brunett et al., 2019). Essential to this integrated tool is its newly developed
capability to properly model the conjugate heat transfer process which ensures equality of temperatures and
heat fluxes at the vehicle wall interface while ensuring energy conservation.

11.3 Coupling with MOOSE-Based or MOOSE-Wrapped Codes
Because SAM is developed based on the MOOSE framework, the coupling with other MOOSE-based

codes and MOOSE-wrapped codes is straightforward by utilizing the MOOSE MultiApp system (Gaston
et al., 2015).

As an example, a multi-physics modeling and simulation effort of a heat pipe micro reactor was pur-
sued to utilize several MOOSE-based submodules under NRC’s Comprehensive Reactor Analysis Bundle
(CRAB), including SAM, MAMMOTH/Rattlesnake, and MOOSE’s Tensor Mechanics module. The numeri-
cal model consists of the following sub-models coupled to each other through the MOOSE MultiApp system.
A schematic representation of interrelation is given in Figure 11.1. Details of this work can be found in (Hu
et al., 2019a).

• RK: one whole-core, 3-D MAMMOTH input with homogenized blocks to solve the linearized Boltz-
mann transport equation.

• HC: one whole-core, 3-D SAM input for the heat conduction calculation in the reactor core.

• HPs: 192 instantiations of a SAM input for modeling the individual heat pipe. Each individual heat
pipe is coupled to a cooling pipe to model the secondary heat exchangers.

• RCCS: a SAM input for modeling the reactor cavity cooling system.

• TM-Fuel: 192 instantiations of a Tensor Mechanics input for modeling the axial expansion of the fuel
elements.

• TM-Plate: a Tensor Mechanics input for modeling the radial expansion of the reactor core.

• Joint: a dummy input model to initiate the simulation flow of the HC and TM.

RK

Joint

HC TM-Plate (radial)

RCCS

hp-1 hp-i hp-N

HPs

tm-1 tm-i tm-N

TM-Fuel (axial)

Power Displacements
Temperatures

Power Temp. Temp. Disp: x, y Temp. Disp: 
z

Heat 
flux

Wall
temp.

Heat  
flux

Wall 
temp.

TIMESTEP_BEGIN TIMESTEP_END

Picard 
iteration

Picard iteration

Figure 11.1: Schematic of the multi-physics coupling method for heat pipe micro reactors
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